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First words

I thank Aditya and the other organisers of this conference for
giving me this opportunity.

I Statutory Warning: My expertise is mainly in decidability
theory and am only a student in the study of descriptive
complexity of graphs.

I Please do feel free to interrupt at any time.
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Logic

What is logic?

I What do you know of logic?

I Do you think logic is useful?

I Do you think logic is useful for theoretical computer
science?
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Algorithms

This winter school is mainly on algorithmic techniques.

I Have you learnt algorithms formally in a course (or two)?

I What are the algorithmic techniques you know of /
remember?

I What are your core insights from algorithm theory?
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Theoretical computer science

What is theoretical computer science?

I Tell me some theorems in tcs.

I Do you know any theorems on algorithms?

I Do you know any theorems on algorithms involving logic?
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Algorithmic metatheorems

This industry was inaugurated by Ron Fagin in 1973.

I Theorem (Fagin 74): A problem is in class NP iff it has a
description in existential second order logic.

I Theorem (Immerman, Vardi 80): A problem is in class P
iff it has a description in first order logic + LFP.

I Thus the P = NP? question has a formulation in logic as
well.

I Since then there have been many logical descriptions of
complexity classes. This area of study is broadly termed
descriptive complexity theory.
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A very live area

Here is a result from two months ago!

I Theorem (Carmosino, Fagin, Immerman, Kolaitis,
Lenchner, Sengupta MFCS2024): Every Boolean function
on n-bit inputs can be defined by a sentence in first order
logic having (1 + ε)nlog(n) + O(1) quantifiers, and that
this is essentially tight. This number reduces to
(1 + ε)log(n) + O(1) when the Boolean function in
question is sparse.

I The proof proceeds by studying winning strategies in a
class of two-player combinatorial games called
multi-structural games.
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In this talk

We will discuss a particular type of algorithmic metatheorems.

I The general pattern: If the problem can be described in a
certain logic and the input can be decomposed in a
certain way, then there is a certain kind of algorithm for it.

I The classic: Theorem (Courcelle 90): If the problem can
be described in Monadic second order logic and the input
has tree width at most k , then there is a linear time
algorithm for it.
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A real life problem

I live in an apartment in a block of flats. Typically every flat
has a WiFi router.

I Adjacent routers interfere, and we wish to link routers so
that no two adjacent ones interfere.

I The abstract problem, of course, is 3-colourability. What
do you know about the problem?

I It is NP-complete and unless P = NP, we cannot solve it
efficiently.

I But sometimes, we can apply a technique like divide and
conquer to 3-colourability!
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A good case

Sometimes divide and conquer can be applied to
3-colourability.

I Pick two appropriate vertices and consider the 6 possible
colourings.

I We can think of a vertex defending a region of the graph.

I We can then solve the problem recursively on the
independent parts.

I Over to the board!
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A game

We can think of this as a game of Cops and robbers, played on
a graph.

I k cops try to catch a robber by being on the same vertex
as her.

I First the cops, then the robber pick a start vertex to
occupy,

I A cop gets on a helicopter and heads towards some
vertex.

I Meanwhile, the robber moves along any path of
unoccupied vertices.
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An abstraction

The cops’ strategy = a tree decomposition of the graph!

I The nodes are positions of the cops.

I The root is their initial position.

I The children of a tree node are the graph components
that could contain the robber.
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Why we want metatheorems

When restricted to graphs of bounded treewidth, all the
following problems are in NC:

I Vertex cover, feedback vertex set, minimum maximal
matching, clique, independent set . . .

I Partition into – triangles, isomorphic subgraphs,
Hamiltonian subgraphs, forests, cliques, perfect
matchings, . . .

I For fixed H – subgraph isomorphism, graph
homomorphism, path with forbidden pairs, . . .

I Degree constrained spanning tree, bounded diameter
spanning tree, max cut, chromatic index, chordal graph
completion for fixed k , . . .
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Tree decompositions

Nice work, if you can get it!

I . . . Courcelle’s theorem: and if you get it, who could ask
for anything more?
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What’s common?

All these problems share one very nice property.

I In 1990, Courcelle noticed that all of these problems can
be described in monadic second order logic (MSO logic).

I This is the familiar language of quantifiers that you all
know, extended with quantification over sets.

I The logic is defined over graphs, so that ∀x means
universal quantification over graph vertices and ∃X means
existential quantification over subsets of graph vertices.

I Over to the board!
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Courcelle’s theorem

Let φ be an MSO formula and k a number. Then
{G | G |= φ, and tw(G ) ≤ k} can be decided in linear time.

I Compute a tree decomposition of G in time linear in the
size of G (and some computable function of k).

I Adjust the formula so that it applies to the tree.

I Transform the formula into a finite state tree automaton.

I The formula is true on G iff ATG
reaches an accepting

state on TG . (This latter property is linear time
checkable,)
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Refinements

Once you have Courcelle’s theorem, you can do better.

I Theorem(Bodlaender, Courcelle): If the problem can be
described in MSO logic and the input has bounded tree
width, then there is a parallel algorithm running in time
O(log n).

I Theorem(Bodlaender, Courcelle): If the problem can be
described in MSO logic and the input has bounded clique
width, then there is a polynomial time algorithm for it.

I Theorem(Frick, Grohe): If the problem can be described
in FO logic and the input is planar, then there is a linear
time algorithm for it.

I Theorem(Flum, Grohe): If the problem can be described
in FO logic and the input has a forbidden minor, then
there is a polynomial time algorithm for it.
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Recent results

While these theorems yield tight upper time bounds, they yield
no completeness results.

I Recent metatheorems concern space complexity and
circuit complexity.

I They also yield completeness results.
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A space result

L = problems solvable by deterministic Turning machines,
using work space of size only logarithmic in the input size.

I Courcelle’s theorem can be refined to show that over
graphs of bounded treewidth, MSO-definable properties
are in L.

I Corollary: Over graphs of bounded treewidth, his gives
logspace algorithms for 3-colourability, perfect matching,
reachability from a source vertex, . . .

I Each of these results would have been a paper not too
long ago.
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New structure theorems and algorithmic

applications

Thomassen has shown that all graphs of sufficiently large tree
width have a cycle whose length is a multiple of 3.

I This suggests the following algorithm for checking
whether an arbitrary graph G has a cycle whose length is
a multiple of 3.

I Check, whether G has small tree width. If yes, subdivide
all edges and apply the metatheorem to the formula
specifying the property.

I Otherwise say ”yes”.
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Quantifier classes

Once we relate logic and algorithms, there are finer details to
consider.

I Fagin’s theorem shows that a property is in NP iff it is of
the form ∃X∃Y ∃Z∀u∀vφ.

I What about properties of the form ∃X∃Y ∃Z∀u∃v?

I What about properties of the form ∃X∃Y ∀u∀v?

I What about properties of the form ∃X∀u∃v∀w?

I and so on.
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One quantifier class

Theorem (Gottlob, Kolaitis, Schwentick, 2004): ∃∗1∀∃ formulas
describe properties checkable in polynomial time over
undirected simple graphs.

I Preprocess the input graph.

I If the treewidth is small, apply Courcelle’s theorem.

I If not, check whether a special cycle of constant length
exists.

I Otherwise say yes.

I This is a very difficult proof, running to about 35 pages.
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Developments

Results on ∃∗1∀∃ formulas have now been refined to logspace.

I Further quantifier classes have been characterized for
other complexity classes.

I Examples: ∃1∀∃ in AC0, ∃21∀∃ in L, ∃1∃∗∀∃ in NL, ∃21∀∀
in NP , and so on.

I The proofs show how logical definability is a key
constraint in our ability to formulate algorithms.
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A range of applications

A similar argument shows that there are space efficient
pseudo-polynomial time algorithms for:

I knapsack problems,

I bin packing problems,

I scheduling problems, and

I integer programming for a fixed number of inequalities.
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In conclusion

The logic – algorithms connection is deeply insightful, and
gives us uniform results on existence of algorithms for checking
a wide ranging class of properties.

I Now there are algorithmic metatheorems for constant
depth circuits.

I Open: Are there space efficient metatheorems for graphs
of bounded clique-width?

I Algorithmic theory of nowhere dense graphs, sparse
graphs, . . .

I We found the use of tree automata here, what about
automata running on graphs, and their connection to
logic?

I Welcome to the study of logic and complexity theory.
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