Introduction to Fair Division

Computational Social Choice

Aditi Sethia
Post-Doctoral Fellow
CSA, l1Sc

December 10, 2024

* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

* What properties should a ‘good’ decision satisfy?

* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices
* What properties should a ‘good’ decision satisfy?
* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)

* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

* What properties should a ‘good’ decision satisfy?

* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)

* Do such ‘good’ decisions always exist?

* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

What properties should a ‘good’ decision satisfy?

L]

* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)

* Do such ‘good’ decisions always exist?
* What Computation has to do with it?

* If such solutions exist, can they be computed efficiently?

=3
]
S}
-
=
(=}
(D]
(]
o
Q
e
]
Q
2
<
B
o=
pr
e
(]
(%]
£
9
2
o
-
(a1

Divisible resources

|

vl

U3
X

| @\

Problem Setting: Allocate Resources!

Indivisible resources

Fair Division of Divisible ltems

Cake Division Model

An Allocation X = (X}, X,)

Agent 1 Agent 2

* Valuations functions: v;(X) =1

Cake Division Model

X,
Agent 1 Agent 2
05 / \ 0.7
l
0 / !
\ /
Xi

* Valuations functions: v;(X) =1

* Additivity: v (X1) = \/1(X11) + vl(X12)

Cake Division Model

XZ
Agent 1 Agent 2
o / \ 0.7
l
0 y !
\ /
X

* Valuations functions: v;(X) =1
Additivity: va(X1) = vi(XE) + va(X3)
* Robertson-Web Model:

= evali(x,y) = vi(x,y)
+ cuti(x,a) = y such that vi(x,y) = a

Cake Division Model

An Allocation X = (X, X,)

Agent 1 " eval query Agent 2

a

|
I
0 X y

& cut query

* Valuations functions: v;(X) =1
Additivity: va(X1) = vi(XE) + va(X3)
* Robertson-Web Model:

= evali(x,y) = vi(x,y)
+ cuti(x,a) = y such that vi(x,y) = a

Fairness Notions

XZ
Agent 1 Agent 2
05 / \ et
0 \ /
Xl

* (Steinhaus, 1948) Proportionality: v;(X;) >

S |=

Fairness Notions

XZ
Agent 1 Agent 2
0.5 / \ 0.7
I
1
0 \ /
Xl

* (Steinhaus, 1948) Proportionality: v;(X;) > %
* (Gamow and Stern, 1958; Foley, 1967) Envy-Freeness: v;(X;) > vi(X))

Envy-Free Cake Division for 2 Agents

X, | X,
Agent 1: | —

10

Envy-Free Cake Division for 2 Agents

X,

Agent 1: I

Agent 2: |

10

Envy-Free Cake Division for 2 Agents

X, | X5

Agent 1:

Agent 2: |

* Envy-Free

* Also Proportional: v1(X1) = % and vo(X2) > %

10

Proportional Cake Division for n Agents

Dubins-Spanier Procedure

1

n

vi(Xi) >

L]

A knife moves on the interval [0, 1]

An agent i shouts when the knife reaches a point y such that v;([0,y]) = %

n

* The agent leaves with the piece [0, y]

* The process repeats with the remaining agents

11

Proportional Cake Division for n Agents

Dubins-Spanier Procedure

1

n

vi(Xi) >

L]

A knife moves on the interval [0, 1]

An agent i shouts when the knife reaches a point y such that v;([0,y]) = %

n

* The agent leaves with the piece [0, y]

* The process repeats with the remaining agents

11

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)

* Agents 1, 2, 3 and a Cake C = [0,1]

* Valuations vy, va, v3

12

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
* Agents 1, 2, 3 and a Cake C = [0,1]

* Valuations vy, va, v3

Xl 2
Agent 1: | |

X X, ‘ X3 X' X\X'

Agent 2: | ‘

Trimmings

Agent 3: |

12

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)

* Agents 1, 2, 3 and a Cake C

* Valuations vy, va, v3

XI X?. XJ
Agent 1: | |
| |
X, X, X3 b'd X\X X, X,
Agent 2: | } - | }
Trimmings
XL\X' XZ XZ
Agent 3: | ‘

13

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece

X' X \X' X, | X3

Trimmings

Agent 1:

Agent 2:

Agent 3: .

14

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece

X' X \X' X, | X3

Trimmings
) d

Agent 1: 3.

Agent 2: 5

Agent 3:
N 1, —’—'— S Gets the last left piece

15

Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece

X X\X | X | X,

Trimmings

Agent 1: 3.

Agent 3:

X
S
X
Agent 2: 2.
X
A
X

X\X X, ‘ X,

16

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

17

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

17

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

’ Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

17

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

’ Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

* (Lindner and Rothe 2015) “Despite intense efforts over decades, up to this date
no one has succeeded in finding a finite bounded cake-cutting protocol that
guarantees envy-freeness for any number of players"

17

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

’ Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

* (Lindner and Rothe 2015) “Despite intense efforts over decades, up to this date
no one has succeeded in finding a finite bounded cake-cutting protocol that
guarantees envy-freeness for any number of players"

* (Aziz and Mackenzie 2016) There is a bounded finite protocol that guarantees EF

!

cake division for any number of agents with at most " queries.

17

Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

’ Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

* (Lindner and Rothe 2015) “Despite intense efforts over decades, up to this date
no one has succeeded in finding a finite bounded cake-cutting protocol that
guarantees envy-freeness for any number of players"

* (Aziz and Mackenzie 2016) There is a bounded finite protocol that guarantees EF

!

cake division for any number of agents with at most " queries.

* (Proccacia, 2009) Any EF protocol requires at least Q(n?) queries.

17

Fair Division of Indivisible Items

18

Dividing the Indivisible!

* Set of Items {g1,82,...8m}
* Set of Agents {a1,a2,...an}

81 &
8s &

86
8
i 84

X X, X, X,

81 83 | &

a; a, a, a,

19

Dividing the Indivisible!

8 8 83 8 &
a1 5 10 2 3 10
a> 10 5 2 4 12

20

Dividing the Indivisible!

8 8 83 8 &
a1 5 10 2 3 10
a> 10 5 2 4 12

vi(X1) = vi({g1,82}) = vi(g1) + vi(g2) =5+ 10 =15

20

Dividing the Indivisible!

EF does not exist for indivisible items!

T 9

Deciding if there is an EF allocation is NP-Hard even for binary valuations!

21

Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})

22

Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
(Caragiannis et al. 2016) EF upto any item (EFX): vi(X;) > v;(X; \ {g}) Vg € X;

22

Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
(Caragiannis et al. 2016) EF upto any item (EFX): vi(X;) > v;(X; \ {g}) Vg € X;

82 83

a 1
2 I

22

Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
(Caragiannis et al. 2016) EF upto any item (EFX): vi(X;) > v;(X; \ {g}) Vg € X;

81 82 83

3112

EF1 but not EFX

22

Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
(Caragiannis et al. 2016) EF upto any item (EFX): vi(X;) > v;(X; \ {g}) Vg € X;

81 82 83

3112

EF1 but not EFX
EF = EFX = EF1

22

Results At a Glance

* EF1 always exists (even for monotone valuations)

* EFX always exists for 2 agents (Plaut and Roughgarden 2020), 3 agents
(Chaudhury et al. 2020), 2 types of agents (Mahara 2023)

’ Do EFX Allocations always exists? ‘

23

EF1 Allocations

Envy Cycle Elimination (Lipton et al. 2004)

24

Envy Cycle Elimination

81

25

Envy Cycle Elimination

26

Envy Cycle Elimination

82

27

Envy Cycle Elimination

e — o

82

28

Envy Cycle Elimination

29

Envy Cycle Elimination

81

\/

e —— o

? 82

Source!
Nobody envies the source!

30

Envy Cycle Elimination

31

Envy Cycle Elimination

81
° \
. \ g
8 \ /) o 3
o« ——— o
84 86 2
No Source!

But there is an Envy Cycle!

32

Envy Cycle Elimination

33

EF1 Allocations

Envy Cycle Elimination
While there is a good g to be allocated:
* Construct Envy Graph of the partial allocation A
* Find a source in the Envy Graph and allocate g to the source
* |If there is no source, then eliminate the envy cycles by rotating the bundles on

the cycle

The process terminated in polynomial time
The final allocation is EF1

34

Thank you!

35

