Introduction to Fair Division

Computational Social Choice

Aditi Sethia
Post-Doctoral Fellow
CSA, l1Sc

December 10, 2024



* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices



* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

* What properties should a ‘good’ decision satisfy?



* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices
* What properties should a ‘good’ decision satisfy?
* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)



* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

* What properties should a ‘good’ decision satisfy?

* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)

* Do such ‘good’ decisions always exist?



* What is Social Choice?

* Making a collective decision based on the individual preferences.
———————

society choices

What properties should a ‘good’ decision satisfy?

L]

* Maximize individual happiness (Fair)
* Maximize collective happiness (Welfare)

* Do such ‘good’ decisions always exist?
* What Computation has to do with it?

* If such solutions exist, can they be computed efficiently?
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Problem Setting: Allocate Resources!

Indivisible resources




Fair Division of Divisible ltems




Cake Division Model

An Allocation X = (X}, X,)

Agent 1 Agent 2

* Valuations functions: v;(X) =1
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* Valuations functions: v;(X) =1
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Fairness Notions
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Fairness Notions
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* (Steinhaus, 1948) Proportionality: v;(X;) > %
* (Gamow and Stern, 1958; Foley, 1967) Envy-Freeness: v;(X;) > vi(X))



Envy-Free Cake Division for 2 Agents
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Envy-Free Cake Division for 2 Agents

X, | X5

Agent 1:

Agent 2: |

* Envy-Free

* Also Proportional: v1(X1) = % and vo(X2) > %
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Proportional Cake Division for n Agents

Dubins-Spanier Procedure

1

n

vi(Xi) >

L]

A knife moves on the interval [0, 1]

# An agent i shouts when the knife reaches a point y such that v;([0,y]) = %

n

* The agent leaves with the piece [0, y]

* The process repeats with the remaining agents
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Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)

* Agents 1, 2, 3 and a Cake C = [0,1]

* Valuations vy, va, v3
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Selfridge-Conway Algorithm (1960's)
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Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)

* Agents 1, 2, 3 and a Cake C

* Valuations vy, va, v3

XI X?. XJ
Agent 1: | |
| |
X, X, X3 b'd X\X X, X,
Agent 2: | } - | }
Trimmings
XL\X' XZ XZ
Agent 3: | ‘

13



Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece
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Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece

X' X \X' X, | X3

Trimmings
) d

Agent 1: 3.

Agent 2: 5

Agent 3:
N 1, —’—'— S Gets the last left piece
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Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960's)
The Trimmed Piece

X X\X | X | X,

Trimmings

Agent 1: 3.

Agent 3:

X
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Envy-Free Cake Division: The Story

* (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.
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* (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

’ Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

* (Lindner and Rothe 2015) “Despite intense efforts over decades, up to this date
no one has succeeded in finding a finite bounded cake-cutting protocol that
guarantees envy-freeness for any number of players"

* (Aziz and Mackenzie 2016) There is a bounded finite protocol that guarantees EF

!

cake division for any number of agents with at most "  queries.

* (Proccacia, 2009) Any EF protocol requires at least Q(n?) queries.
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Fair Division of Indivisible Items
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Dividing the Indivisible!

* Set of Items {g1,82,...8m}
* Set of Agents {a1,a2,...an}

81 &
8s &

86
8
i 84

X X, X, X,

81 83 | &

a; a, a, a,
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Dividing the Indivisible!

8 8 83 8 &
a1 5 10 2 3 10
a> 10 5 2 4 12

20



Dividing the Indivisible!

8 8 83 8 &
a1 5 10 2 3 10
a> 10 5 2 4 12

vi(X1) = vi({g1,82}) = vi(g1) + vi(g2) =5+ 10 =15
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Dividing the Indivisible!

EF does not exist for indivisible items!

T 9

Deciding if there is an EF allocation is NP-Hard even for binary valuations!
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Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
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Dividing the Indivisible

* (Budish 2011) EF upto one item (EF1): v;(X;) > v;(X; \ {g})
# (Caragiannis et al. 2016) EF upto any item (EFX): vi(X;) > v;(X; \ {g}) Vg € X;

81 82 83

3112

EF1 but not EFX
EF = EFX = EF1
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Results At a Glance

* EF1 always exists (even for monotone valuations)

* EFX always exists for 2 agents (Plaut and Roughgarden 2020), 3 agents
(Chaudhury et al. 2020), 2 types of agents (Mahara 2023)

’ Do EFX Allocations always exists? ‘
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EF1 Allocations

Envy Cycle Elimination (Lipton et al. 2004)

24



Envy Cycle Elimination
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Envy Cycle Elimination
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Envy Cycle Elimination
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Envy Cycle Elimination
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Envy Cycle Elimination
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Envy Cycle Elimination
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Source!
Nobody envies the source!
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Envy Cycle Elimination
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Envy Cycle Elimination
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No Source!

But there is an Envy Cycle!
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Envy Cycle Elimination
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EF1 Allocations

Envy Cycle Elimination
While there is a good g to be allocated:
* Construct Envy Graph of the partial allocation A
* Find a source in the Envy Graph and allocate g to the source
* |If there is no source, then eliminate the envy cycles by rotating the bundles on

the cycle

The process terminated in polynomial time
The final allocation is EF1
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Thank you!
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