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I
Outline

I What is Social Choice?

I Making a collective decision︸ ︷︷ ︸
society

based on the individual preferences︸ ︷︷ ︸
choices

.

I What properties should a ‘good’ decision satisfy?

I Maximize individual happiness (Fair)
I Maximize collective happiness (Welfare)

I Do such ‘good’ decisions always exist?

I What Computation has to do with it?

I If such solutions exist, can they be computed efficiently?
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I
Problem Setting: Allocate Resources!

Divisible resources
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I
Fair Division of Divisible Items
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I
Cake Division Model

I Valuations functions: vi (X ) = 1
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Cake Division Model

I Valuations functions: vi (X ) = 1

I Additivity: v1(X1) = v1(X 1
1 ) + v1(X 2

1 )

I Robertson-Web Model:

I evali (x , y) = vi (x , y)

I cuti (x , α) = y such that vi (x , y) = α
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I
Fairness Notions

I (Steinhaus, 1948) Proportionality: vi (Xi ) ≥ 1
n

I (Gamow and Stern, 1958; Foley, 1967) Envy-Freeness: vi (Xi ) ≥ vi (Xj )
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I
Envy-Free Cake Division for 2 Agents

I Envy-Free

I Also Proportional: v1(X1) =
1
2 and v2(X2) ≥ 1

2
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I
Proportional Cake Division for n Agents

Dubins-Spanier Procedure

vi (Xi ) ≥
1
n

I A knife moves on the interval [0, 1]

I An agent i shouts when the knife reaches a point y such that vi ([0, y ]) = 1
n

I The agent leaves with the piece [0, y ]

I The process repeats with the remaining agents
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I
Envy-Free Cake Division for 3 Agents

Selfridge-Conway Algorithm (1960’s)

I Agents 1, 2, 3 and a Cake C = [0, 1]

I Valuations v1, v2, v3
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I
Envy-Free Cake Division: The Story

I (Selfridge-Conway, 1960) EF cake division exists for n = 3 agents.

I (Brams and Taylor, 1995) An EF cake division exists for n agents and there is a
finite but unbounded procedure to compute such a division.

Q. Does there exist a bounded procedure to compute an EF cake division for n agents?

I (Lindner and Rothe 2015) “Despite intense efforts over decades, up to this date
no one has succeeded in finding a finite bounded cake-cutting protocol that
guarantees envy-freeness for any number of players"

I (Aziz and Mackenzie 2016) There is a bounded finite protocol that guarantees EF

cake division for any number of agents with at most nn
nn

nn

queries.

I (Proccacia, 2009) Any EF protocol requires at least Ω(n2) queries.
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I
Fair Division of Indivisible Items
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I
Dividing the Indivisible!

I Set of Items {g1, g2, . . . gm}

I Set of Agents {a1, a2, . . . an}
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I
Dividing the Indivisible!

g1 g2 g3 g4 g5

a1 5 10 2 3 10
a2 10 5 2 4 12

v1(X1) = v1({g1, g2}) = v1(g1) + v1(g2) = 5 + 10 = 15
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I
Dividing the Indivisible!

EF does not exist for indivisible items!

Deciding if there is an EF allocation is NP-Hard even for binary valuations!
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I
Dividing the Indivisible

I (Budish 2011) EF upto one item (EF1): vi (Xi ) ≥ vi (Xj \ {g})

I (Caragiannis et al. 2016) EF upto any item (EFX): vi (Xi ) ≥ vi (Xj \ {g}) ∀g ∈ Xj

g1 g2 g3

a1 1 1 2
a2 1 1 2

EF1 but not EFX

EF ⇒ EFX ⇒ EF1
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I
Results At a Glance

I EF1 always exists (even for monotone valuations)

I EFX always exists for 2 agents (Plaut and Roughgarden 2020), 3 agents
(Chaudhury et al. 2020), 2 types of agents (Mahara 2023)

Do EFX Allocations always exists?
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I
EF1 Allocations

Envy Cycle Elimination (Lipton et al. 2004)
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I
EF1 Allocations

Envy Cycle Elimination
While there is a good g to be allocated:

I Construct Envy Graph of the partial allocation A

I Find a source in the Envy Graph and allocate g to the source

I If there is no source, then eliminate the envy cycles by rotating the bundles on
the cycle

The process terminated in polynomial time
The final allocation is EF1
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Thank you!
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