Algorithms for Unmanned Search and Rescue Operations

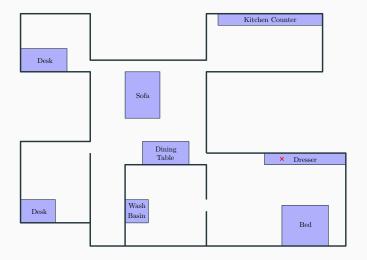
Winter School on TCS, IISc Bangalore

Prahlad Narasimhan Kasthurirangan December 10, 2024

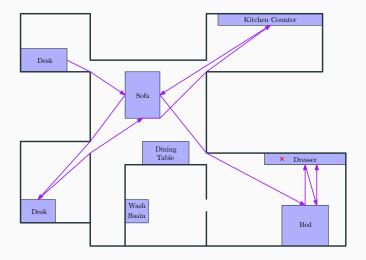
Stony Brook University

Motivation

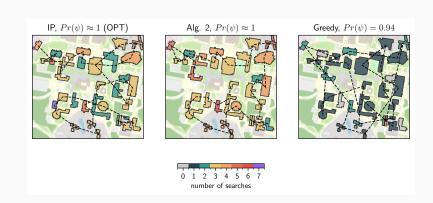
Finding Lost Glasses



Finding Lost Glasses



Search and Rescue



In [Chakraborty, Kasthurirangan, Mitchell, Nguyen, Perk, 2024].

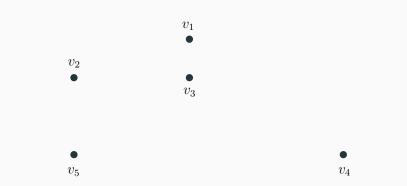
Formal Problem Statement

• Minimize the maximum time required to find the target.

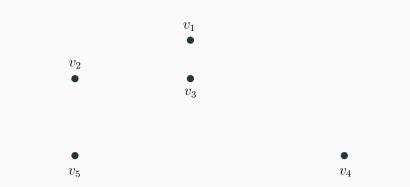
- Minimize the *maximum* time required to find the target.
- Minimize the average time required to find the target.

- Minimize the *maximum* time required to find the target.
- Minimize the *average* time required to find the target.
- Maximize the chance that you find the target *within* a time budget.

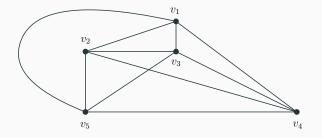
- Minimize the *maximum* time required to find the target.
- Minimize the average time required to find the target.
- Maximize the chance that you find the target *within* a time budget.



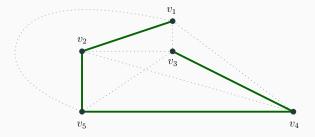
A target is hidden in one of a given set of points on the plane. Minimize the *maximum* time required to find it.

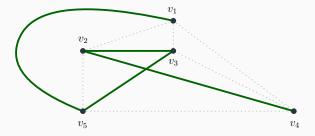


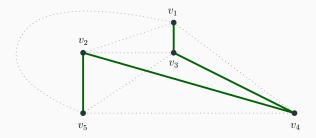
A target is hidden in one of a given set of points on the plane. Find the *shortest path* to visit all of them.

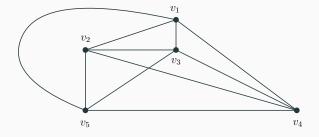


A target is hidden in one of a given set of points on the plane. Find the *shortest path* to visit all of them.

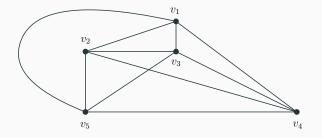




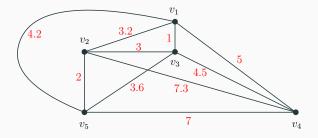


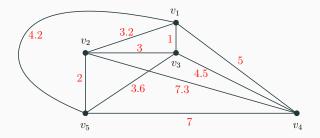


The shortest path connects all vertices.

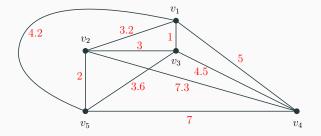


The *shortest path* that connects all vertices is larger than the *smallest weight subgraph* that connects all vertices.

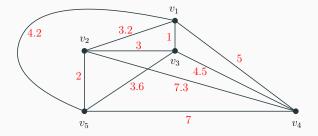




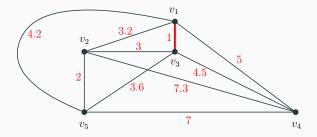
How do we construct the *smallest weight subgraph* that connects all vertices?

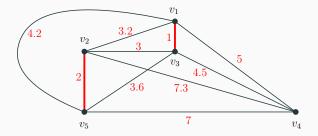


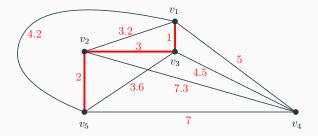
How do we construct the Minimum Spanning Tree (MST)?

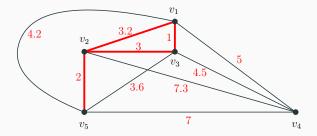


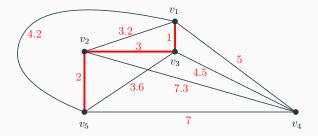
Iteratively pick small edges!

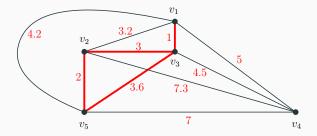


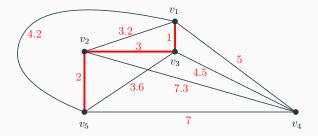


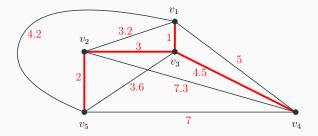


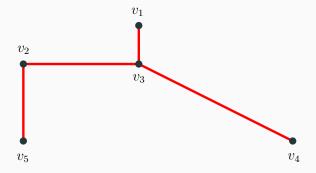


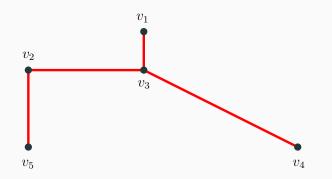




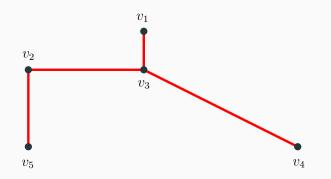






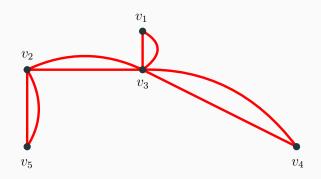


Recall: the *shortest path* is larger than the *smallest weight subgraph* that connects all vertices.



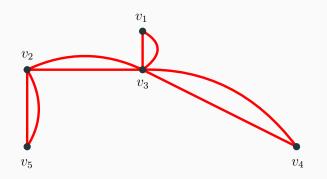
Recall: the shortest path is larger than the smallest weight subgraph that connects all vertices. $|MST^*| \le |TSP^*|$.

Doubling

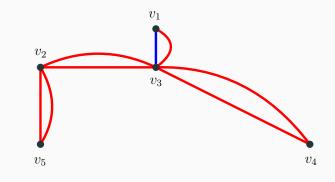


Doubling edges gives us a way to "backtrack".

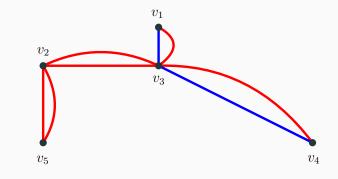
Doubling



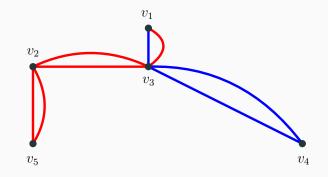
Doubling edges gives us a way to "backtrack". Let us make a *tour* from this!



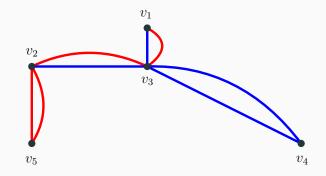
 $(V_1, V_3).$



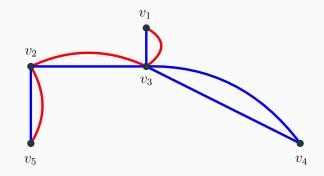
 $(V_1, V_3, V_4).$



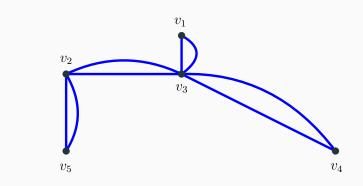
 $(V_1, V_3, V_4, V_3).$



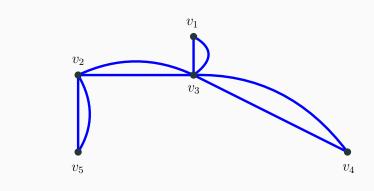
 $(V_1, V_3, V_4, V_3, V_2).$



 $(V_1, V_3, V_4, V_3, V_2, V_5).$



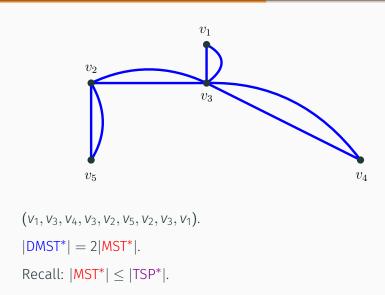
 $(V_1, V_3, V_4, V_3, V_2, V_5, V_2, V_3, V_1).$

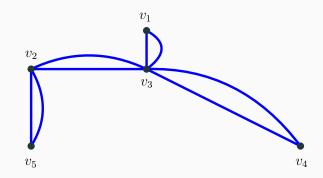


 $(v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$ $|DMST^*| =$



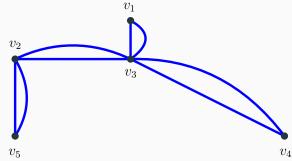
 $(v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$ $|\mathsf{DMST}^*| = 2|\mathsf{MST}^*|.$



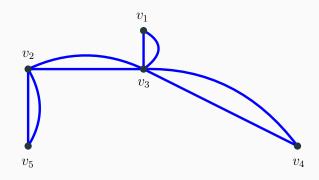


 $|\mathsf{DMST}^*| = 2|\mathsf{MST}^*|$. $|\mathsf{MST}^*| \le |\mathsf{TSP}^*|$.

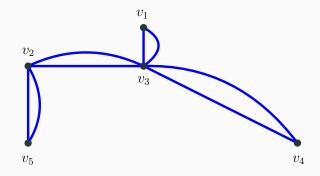
$|\mathsf{DMST}^*| = 2|\mathsf{MST}^*|$. $|\mathsf{MST}^*| \le |\mathsf{TSP}^*|$. If $|\mathsf{TSP}| \le |\mathsf{DMST}^*|$

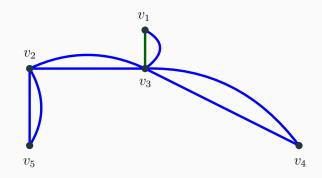


 $|\mathsf{DMST}^*| = 2|\mathsf{MST}^*|$. $|\mathsf{MST}^*| \le |\mathsf{TSP}^*|$. If $|\mathsf{TSP}| \le |\mathsf{DMST}^*|$; then, $|\mathsf{TSP}| \le 2|\mathsf{MST}^*| \Longrightarrow$

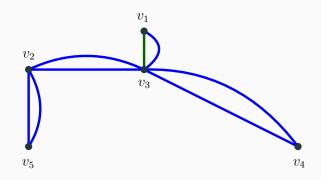


 $|\mathsf{DMST}^*| = 2|\mathsf{MST}^*|$. $|\mathsf{MST}^*| \le |\mathsf{TSP}^*|$. If $|\mathsf{TSP}| \le |\mathsf{DMST}^*|$; then, $|\mathsf{TSP}| \le 2|\mathsf{MST}^*| \implies |\mathsf{TSP}| \le 2|\mathsf{TSP}^*|$.

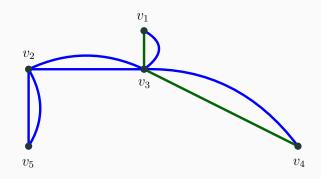




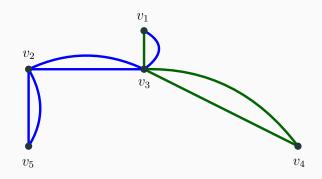
 $\mathsf{TSP} = (v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$



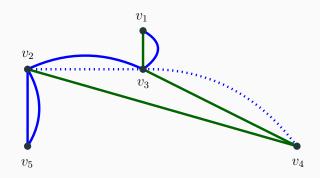
 $TSP = (v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$ $|TSP| = |v_1v_3| \le |DMST^*|.$



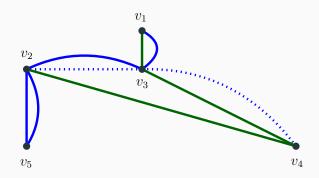
 $TSP = (v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$ $|TSP| = |v_1v_3| + |v_3v_4| \le |DMST^*|.$



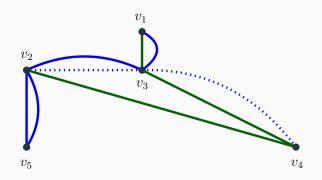
 $TSP = (v_1, v_3, v_4, v_3, v_2, v_5, v_2, v_3, v_1).$ $|TSP| = |v_1v_3| + |v_3v_4| + |v_4v_3| \le |DMST^*|.$



 $\mathsf{TSP} = (v_1, v_3, v_4, \frac{1}{\sqrt{3}}, v_4, v_5, v_2, v_3, v_1).$

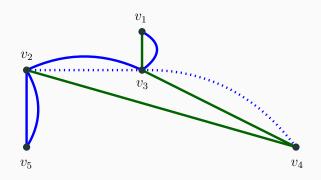


 $TSP = (v_1, v_3, v_4, \frac{v_3}{3}, v_4, v_5, v_2, v_3, v_1).$ $|TSP| = |v_1v_3| + |v_3v_4| + |v_4v_2|.$



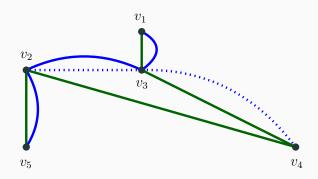
$$TSP = (v_1, v_3, v_4, \frac{v_3}{3}, v_4, v_5, v_2, v_3, v_1).$$

$$|TSP| = |v_1v_3| + |v_3v_4| + \underbrace{|v_4v_2|}_{\leq |v_4v_3| + |v_3v_2|}.$$

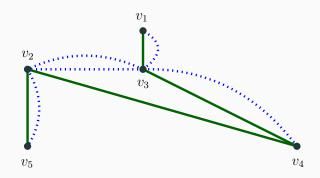


$$TSP = (v_1, v_3, v_4, \forall_3, v_4, v_5, v_2, v_3, v_1).$$

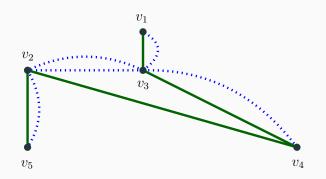
$$|TSP| = |v_1v_3| + |v_3v_4| + \underbrace{|v_4v_2|}_{\leq |v_4v_3| + |v_3v_2|} \leq |DMST^*|.$$



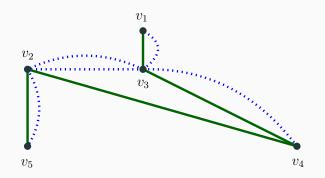
 $TSP = (v_1, v_3, v_4, \frac{v_3}{v_3}, v_4, v_5, v_2, v_3, v_1).$ $|TSP| = |v_1v_3| + |v_3v_4| + |v_4v_2| + |v_2v_5| \le |DMST^*|.$



 $\mathsf{TSP} = (\mathsf{v}_1, \mathsf{v}_3, \mathsf{v}_4, \mathbf{\forall}_3, \mathsf{v}_4, \mathsf{v}_5, \mathbf{\forall}_2, \mathbf{\forall}_3, \mathbf{\forall}_1).$

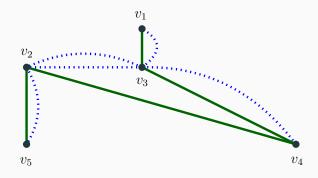


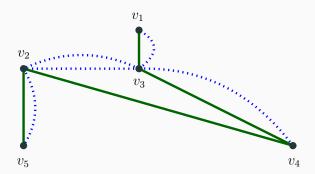
 $\mathsf{TSP} = (v_1, v_3, v_4, \forall_3, v_4, v_5, \forall_2, \forall_3, \forall_7). \ \mathsf{TSP} = (v_1, v_3, v_4, v_2, v_5).$



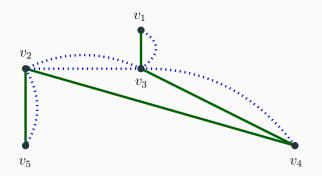
 $TSP = (v_1, v_3, v_4, \frac{1}{\sqrt{3}}, v_4, v_5, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}). TSP = (v_1, v_3, v_4, v_2, v_5).$ $|TSP| = |v_1v_3| + |v_3v_4| + |v_4v_2| + |v_2v_5| \le |\mathsf{DMST}^*|.$

 $\begin{aligned} |\mathsf{DMST}^*| &= 2|\mathsf{MST}^*|. \ |\mathsf{MST}^*| \leq |\mathsf{TSP}^*|. \\ If \ |\mathsf{TSP}| &\leq |\mathsf{DMST}^*|; \ |\mathsf{TSP}| \leq 2|\mathsf{MST}^*| \implies |\mathsf{TSP}| \leq 2|\mathsf{TSP}^*|. \end{aligned}$





 $|\mathsf{TSP}| \le 2|\mathsf{TSP}^*|.$



 $|TSP| \le 2|TSP^*|$. We have given a 2-approximation algorithm for TRAVELLING SALESMAN!

• A small modification gives us a $\frac{3}{2}$ -approximation algorithm [Christofedes, 1976]!

- A small modification gives us a ³/₂-approximation algorithm [Christofedes, 1976]!
- Breaking news! There is a a $(\frac{3}{2} 10^{-36})$ -approximation algorithm for TRAVELLING SALESMAN on any *metric space* [Karlin, Klein, Gharan, 2021].

- A small modification gives us a ³/₂-approximation algorithm [Christofedes, 1976]!
- Breaking news! There is a a $(\frac{3}{2} 10^{-36})$ -approximation algorithm for TRAVELLING SALESMAN on any *metric space* [Karlin, Klein, Gharan, 2021].
- For any ε > 0, there is a (1 + ε)-approximation algorithm [Arora, 1998], [Mitchell, 1999] for TRAVELLING SALESMAN on the plane!

• TRAVELLING SALESMAN is NP-HARD.

- TRAVELLING SALESMAN is NP-HARD.
- It admits an obvious $\mathcal{O}(n^n)$ -time algorithm.

- TRAVELLING SALESMAN is NP-HARD.
- It admits an obvious $\mathcal{O}(n^n)$ -time algorithm.
- Using dynamic programming techniques, we can get an *O*(2ⁿ)-time algorithm [Held, Karp, 1961], [Bellman, 1962].

- TRAVELLING SALESMAN is NP-HARD.
- It admits an obvious $\mathcal{O}(n^n)$ -time algorithm.
- Using dynamic programming techniques, we can get an *O*(2ⁿ)-time algorithm [Held, Karp, 1961], [Bellman, 1962].
- Open question: Does there exists a faster exact algorithm for TRAVELLING SALESMAN?

Other Objectives

How do we search for something quickly when we have imperfect sensing capabilities?

- Minimize the *maximum* time required to find the target.
- Minimize the *average* time required to find the target.
- Maximize the chance that you find the target *within* a time budget.

TRAVELLING SALESMAN.

How do we search for something quickly when we have imperfect sensing capabilities?

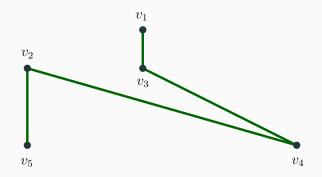
- Minimize the *maximum* time required to find the target.
- Minimize the average time required to find the target.
- Maximize the chance that you find the target *within* a time budget.

MINIMUM LATENCY.

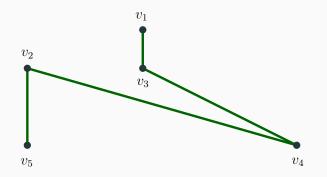
How do we search for something quickly when we have imperfect sensing capabilities?

- Minimize the *maximum* time required to find the target.
- Minimize the *average* time required to find the target.
- Maximize the chance that you find the target *within* a time budget.

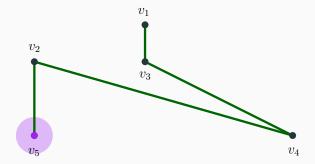
ORIEENTEERING.



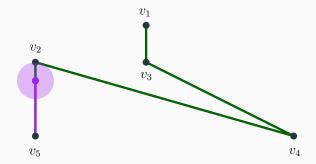
Minimize the maximum time required to find the target.



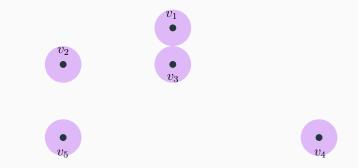
Minimize the *maximum* time required to find the target. To search a point, you must be *at* that point.



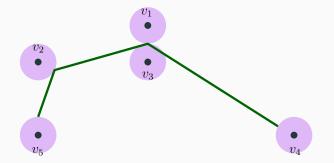
What if you have a search radius r > 0?



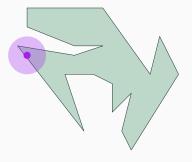
You only need to get within r of a point to search it!



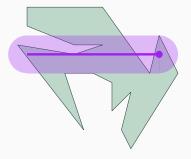
TRAVELLING SALESMAN WITH NEIGHBOURHOODS.



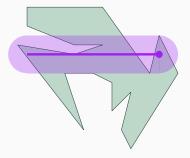
A TRAVELLING SALESMAN WITH NEIGHBOURHOODS search path.



Searching a continuous domain.

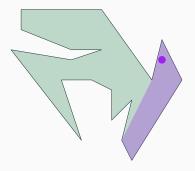


Searching a continuous domain.

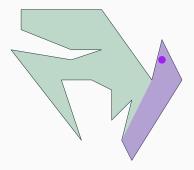


Searching a continuous domain. LAWN MOWING.

A LAWN MOWING search path.



What if you can search everything that you can see?



What if you can search everything that you can see? WATCHMAN ROUTE.

A WATCHMAN ROUTE search path.

How do we search for something quickly when we have imperfect sensing capabilities?

- You will *never* be completely sure.
- You might have to search the same point *multiple* times.
- Pr (X = i) changes as we conduct the search.

How do we search for something quickly when we have imperfect sensing capabilities?

- You will *never* be completely sure.
- You might have to search the same point *multiple* times.
- Pr (X = i) changes as we conduct the search.

Thank you!