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How do we search for something quickly when we have
imperfect sensing capabilities?
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Search and Rescue

IP, Pr(ψ) ≈ 1 (OPT) Alg. 2, Pr(ψ) ≈ 1 Greedy, Pr(ψ) = 0.94
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number of searches

In [Chakraborty, Kasthurirangan, Mitchell, Nguyen, Perk, 2024].

https://arxiv.org/abs/2410.06069
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How do we search for something quickly when we have
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• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.
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smallest weight subgraph that connects all vertices.



Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the smallest weight subgraph that
connects all vertices?



Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the smallest weight subgraph that
connects all vertices?



Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the Minimum Spanning Tree (MST)?
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Iteratively pick small edges!
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Recall: the shortest path is larger than the smallest weight
subgraph that connects all vertices. |MST∗| ≤ |TSP∗|.



Doubling

v3

v5

v1

v2

v4

Doubling edges gives us a way to “backtrack”.

Let us make a
tour from this!



Doubling

v3

v5

v1

v2

v4

Doubling edges gives us a way to “backtrack”. Let us make a
tour from this!



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3).



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4).



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3).



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2).



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5).



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| =

2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|

; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒

|TSP| ≤ 2|TSP∗|.



A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v3| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|︸ ︷︷ ︸
≤|v4v3|+|v3v2|

.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|︸ ︷︷ ︸
≤|v4v3|+|v3v2|

≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1). TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1). TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.



Recall

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

|TSP| ≤ 2|TSP∗|.

We have given a 2-approximation algorithm for
TRAVELLING SALESMAN!



TRAVELLING SALESMAN

v3

v5

v1

v2

v4

|TSP| ≤ 2|TSP∗|. We have given a 2-approximation algorithm for
TRAVELLING SALESMAN!



TRAVELLING SALESMAN– Better Algorithms?
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2-approximation algorithm

[Christofedes, 1976]!

• Breaking news! There is a a ( 32 − 10−36)-approximation
algorithm for TRAVELLING SALESMAN on any metric space
[Karlin, Klein, Gharan, 2021].

• For any ϵ > 0, there is a (1+ ϵ)-approximation algorithm
[Arora, 1998], [Mitchell, 1999] for TRAVELLING SALESMAN on
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