
Algorithms for Unmanned Search and Rescue
Operations
Winter School on TCS, IISc Bangalore

Prahlad Narasimhan Kasthurirangan
December 10, 2024

Stony Brook University

mailto: prahladnarasim.kasthurirangan@stonybrook.edu

Motivation

Motivation

How do we search for something quickly when we have
imperfect sensing capabilities?

Finding Lost Glasses

Desk

Kitchen Counter

Dresser

Bed

Wash
Desk

Basin

Dining
Table

Sofa

Finding Lost Glasses

Desk

Kitchen Counter

Dresser

Bed

Wash
Desk

Basin

Dining
Table

Sofa

Search and Rescue

IP, Pr(ψ) ≈ 1 (OPT) Alg. 2, Pr(ψ) ≈ 1 Greedy, Pr(ψ) = 0.94

0 1 2 3 4 5 6 7

number of searches

In [Chakraborty, Kasthurirangan, Mitchell, Nguyen, Perk, 2024].

https://arxiv.org/abs/2410.06069

Formal Problem Statement

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

•
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.

• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.

• Maximize the chance that you find the target within a time
budget.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

A target is hidden in one of a given set of points on the plane.
Minimize the maximum time required to find it.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

A target is hidden in one of a given set of points on the plane.
Find the shortest path to visit all of them.

TRAVELLING SALESMAN

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

A target is hidden in one of a given set of points on the plane.
Find the shortest path to visit all of them.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

The shortest path connects all vertices.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

The shortest path that connects all vertices is larger than the
smallest weight subgraph that connects all vertices.

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the smallest weight subgraph that
connects all vertices?

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the smallest weight subgraph that
connects all vertices?

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

How do we construct the Minimum Spanning Tree (MST)?

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Iteratively pick small edges!

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

1
3

3.2

5
4.5

7.3
2

3.6

4.2

7

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

Recall: the shortest path is larger than the smallest weight
subgraph that connects all vertices.

Finding the Smallest Weight Subgraph

v3

v5

v1

v2

v4

Recall: the shortest path is larger than the smallest weight
subgraph that connects all vertices. |MST∗| ≤ |TSP∗|.

Doubling

v3

v5

v1

v2

v4

Doubling edges gives us a way to “backtrack”.

Let us make a
tour from this!

Doubling

v3

v5

v1

v2

v4

Doubling edges gives us a way to “backtrack”. Let us make a
tour from this!

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3).

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4).

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3).

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2).

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5).

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| =

2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

(v1, v3, v4, v3, v2, v5, v2, v3, v1).

|DMST∗| = 2|MST∗|.

Recall: |MST∗| ≤ |TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|

; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒

|TSP| ≤ 2|TSP∗|.

A Cycle from a Doubled Tree

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; then, |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v2, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v3| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|︸ ︷︷ ︸
≤|v4v3|+|v3v2|

.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|︸ ︷︷ ︸
≤|v4v3|+|v3v2|

≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1).

TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1). TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TSP = (v1, v3, v4, v3, v4, v5, v2, v3, v1). TSP = (v1, v3, v4, v2, v5).

|TSP| = |v1v3|+ |v3v4|+ |v4v2|+ |v2v5| ≤ |DMST∗|.

Recall

v3

v5

v1

v2

v4

|DMST∗| = 2|MST∗|. |MST∗| ≤ |TSP∗|.

If |TSP| ≤ |DMST∗|; |TSP| ≤ 2|MST∗| =⇒ |TSP| ≤ 2|TSP∗|.

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

|TSP| ≤ 2|TSP∗|.

We have given a 2-approximation algorithm for
TRAVELLING SALESMAN!

TRAVELLING SALESMAN

v3

v5

v1

v2

v4

|TSP| ≤ 2|TSP∗|. We have given a 2-approximation algorithm for
TRAVELLING SALESMAN!

TRAVELLING SALESMAN– Better Algorithms?

• A small modification gives us a 3
2-approximation algorithm

[Christofedes, 1976]!

• Breaking news! There is a a (32 − 10−36)-approximation
algorithm for TRAVELLING SALESMAN on any metric space
[Karlin, Klein, Gharan, 2021].

• For any ϵ > 0, there is a (1+ ϵ)-approximation algorithm
[Arora, 1998], [Mitchell, 1999] for TRAVELLING SALESMAN on
the plane!

https://link.springer.com/article/10.1007/s43069-021-00101-z
https://dl.acm.org/doi/10.1145/3406325.3451009
https://dl.acm.org/doi/10.1145/290179.290180
https://epubs.siam.org/doi/10.1137/S0097539796309764

TRAVELLING SALESMAN– Better Algorithms?

• A small modification gives us a 3
2-approximation algorithm

[Christofedes, 1976]!
• Breaking news! There is a a (32 − 10−36)-approximation
algorithm for TRAVELLING SALESMAN on any metric space
[Karlin, Klein, Gharan, 2021].

• For any ϵ > 0, there is a (1+ ϵ)-approximation algorithm
[Arora, 1998], [Mitchell, 1999] for TRAVELLING SALESMAN on
the plane!

https://link.springer.com/article/10.1007/s43069-021-00101-z
https://dl.acm.org/doi/10.1145/3406325.3451009
https://dl.acm.org/doi/10.1145/290179.290180
https://epubs.siam.org/doi/10.1137/S0097539796309764

TRAVELLING SALESMAN– Better Algorithms?

• A small modification gives us a 3
2-approximation algorithm

[Christofedes, 1976]!
• Breaking news! There is a a (32 − 10−36)-approximation
algorithm for TRAVELLING SALESMAN on any metric space
[Karlin, Klein, Gharan, 2021].

• For any ϵ > 0, there is a (1+ ϵ)-approximation algorithm
[Arora, 1998], [Mitchell, 1999] for TRAVELLING SALESMAN on
the plane!

https://link.springer.com/article/10.1007/s43069-021-00101-z
https://dl.acm.org/doi/10.1145/3406325.3451009
https://dl.acm.org/doi/10.1145/290179.290180
https://epubs.siam.org/doi/10.1137/S0097539796309764

TRAVELLING SALESMAN– Better Algorithms?

• TRAVELLING SALESMAN is NP-HARD.

• It admits an obvious O(nn)-time algorithm.
• Using dynamic programming techniques, we can get an
O(2n)-time algorithm [Held, Karp, 1961], [Bellman, 1962].

• Open question: Does there exists a faster exact algorithm
for TRAVELLING SALESMAN?

https://dl.acm.org/doi/10.1145/800029.808532
https://dl.acm.org/doi/10.1145/321105.321111

TRAVELLING SALESMAN– Better Algorithms?

• TRAVELLING SALESMAN is NP-HARD.
• It admits an obvious O(nn)-time algorithm.

• Using dynamic programming techniques, we can get an
O(2n)-time algorithm [Held, Karp, 1961], [Bellman, 1962].

• Open question: Does there exists a faster exact algorithm
for TRAVELLING SALESMAN?

https://dl.acm.org/doi/10.1145/800029.808532
https://dl.acm.org/doi/10.1145/321105.321111

TRAVELLING SALESMAN– Better Algorithms?

• TRAVELLING SALESMAN is NP-HARD.
• It admits an obvious O(nn)-time algorithm.
• Using dynamic programming techniques, we can get an
O(2n)-time algorithm [Held, Karp, 1961], [Bellman, 1962].

• Open question: Does there exists a faster exact algorithm
for TRAVELLING SALESMAN?

https://dl.acm.org/doi/10.1145/800029.808532
https://dl.acm.org/doi/10.1145/321105.321111

TRAVELLING SALESMAN– Better Algorithms?

• TRAVELLING SALESMAN is NP-HARD.
• It admits an obvious O(nn)-time algorithm.
• Using dynamic programming techniques, we can get an
O(2n)-time algorithm [Held, Karp, 1961], [Bellman, 1962].

• Open question: Does there exists a faster exact algorithm
for TRAVELLING SALESMAN?

https://dl.acm.org/doi/10.1145/800029.808532
https://dl.acm.org/doi/10.1145/321105.321111

Other Objectives

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

TRAVELLING SALESMAN.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

MINIMUM LATENCY.

Three Objectives

How do we search for something quickly when we have
imperfect sensing capabilities?

• Minimize the maximum time required to find the target.
• Minimize the average time required to find the target.
• Maximize the chance that you find the target within a time
budget.

ORIEENTEERING.

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

Minimize the maximum time required to find the target.

To
search a point, you must be at that point.

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

Minimize the maximum time required to find the target. To
search a point, you must be at that point.

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

What if you have a search radius r > 0?

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

You only need to get within r of a point to search it!

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

TRAVELLING SALESMAN WITH NEIGHBOURHOODS.

Generalizations of TRAVELLING SALESMAN

v3

v5

v1

v2

v4

A TRAVELLING SALESMAN WITH NEIGHBOURHOODS search path.

Generalizations of TRAVELLING SALESMAN

Searching a continuous domain.

Generalizations of TRAVELLING SALESMAN

Searching a continuous domain.

LAWN MOWING.

Generalizations of TRAVELLING SALESMAN

Searching a continuous domain. LAWN MOWING.

Generalizations of TRAVELLING SALESMAN

A LAWN MOWING search path.

Generalizations of TRAVELLING SALESMAN

What if you can search everything that you can see?

WATCHMAN
ROUTE.

Generalizations of TRAVELLING SALESMAN

What if you can search everything that you can see? WATCHMAN
ROUTE.

Generalizations of TRAVELLING SALESMAN

A WATCHMAN ROUTE search path.

Questions?

How do we search for something quickly when we have
imperfect sensing capabilities?

• You will never be completely sure.
• You might have to search the same point multiple times.
• Pr (X = i) changes as we conduct the search.

Thank you!

Questions?

How do we search for something quickly when we have
imperfect sensing capabilities?

• You will never be completely sure.
• You might have to search the same point multiple times.
• Pr (X = i) changes as we conduct the search.

Thank you!

	Motivation
	Formal Problem Statement
	Travelling Salesman
	Other Objectives

