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Data Privacy

The ability of an individual to seclude themselves or to
withhold information about themselves



Data are everywhere

Massive collection of personal data by companies and public organizations, driven
by the progress of data science and Al

‘ G
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2

AADHAAR

Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...



Autonomous Driving

= e

Machine Learning on our Data

Real-time Speech Translation

Text to

*Hi, Grandmal [ Spee h. > Translation >
am so excited to iti Correction
speak to youl*

Speech

English
“s-s0 excited, ah...” “Hola, abuelital Estoy

muy emocionada de
Espaﬁol hablar con usted!”

“:-s0 excited

“so excited...”

COLLABORATIVE FILTERING CONTENT-BASED FILTERING

Read by both users

o Read by user
4 P

Similar users O
<—>.. Similar articles

7

Recommended

to user
Read by her,

recommended to him!



Data Privacy: The Problem
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Data Privacy: The Problem

When you visit . tiny tracking files watch . and develop a
awebsite ... what you do online ... profile of
behavior.
TRACKING COMPANIES
~PARENTING INTERESTS
‘%MW“NE-
s,
‘oo‘,s
ADVERTISER
You % Z
might S directly to advertisers.
like this book!
BACKX TO YOU P
The websites you visit show You "/\}
you ads or otter content might &g#*° Advertisers buy ad space
based on the éascription of like this car!
you In the dossiers they've from websites at auctions.

built and analyzed

How our data are collected?

OFFLINE DATA

Census figures, real
estate records, car
registration, etc
.. to be sold to
consumers like you.
Q
An advertiser can \ ' '»
now pitch to you g
directly, having

bought access to
the unique ID code
that ientifies your
computer to the
tracking firms. ADVERTISER



Data Privacy: The Problem

Websites that track
our data

— ¢

Site Exposure Index Trackers

dictonary.com 234
merriam-webster.com 131
comcastnet 151
careerdullder.com High 118
photobucketcom 127
msn.com High 207
answers.com | Medium | 120
yp.com 89
msnbc.com [ Modium | 17
yahoo.com 106
aol.com [ Medium | 133

wiki answers.com | Medium | 72
cnn.com | Medium | 72
aboutcom 83
cnet.com | Medium | 81
verizonwireless.com [ Medium | 90
imdb.com | Medium | 55
live.com [ Medium | 115
att.com | Medium | 58
walmart.com | Medium | 66
bbe.co.uk | Medium | 45
ebay.com [ Medium | 42
ehow.com 55



Data Privacy: The Problem

Class +1 ® O
wix+b>1 ° L 2P
®
@

/-

Support vectors reveal training data

Prefix
East Stroudsburg Stroudsburg... ]
GPT-2

f Memorized text ]

Corporation Seabank Centre
Marine Parade Southport

Peter

.com

Fax: ok

|L[LMs reveal Sensitive information
(by adversarial prompting)

Modern ML models almost memorize inputs (e.g. Autocomplete feature in Gmail)




Data Privacy: The Problem

Given a database with sensitive information such as

" credit card number, passwords,
" name, age, gender, bank details, biometrics, ...

" medical records, political opinions, religious beliefs, ...

How can we

| Credentials

ldentification Information

Sensitive Information

Policy formation, Clinical trials, Sentiment analysis,
Searching for fraud, Academic research, ....

- =

= ensure desirable uses of the data Hiding individual

information

= while protecting the privacy of the data subjects?



Privacy in Statistical Databases

Individuals
(data subjects)

® Data users
al - (ex: government,
o Algorithm |« St researchers,
o (ex: learning compa.nles,

: _ answers &

: algorithm) (ex: aggregate statistics, '
& machine learning model)

adversary)
Statistical analysis benefits Large collection of personal

society information




Two Conflicting Objectives

Releasing Aggregate

W

.
Statistics L I_Gt

lity Privacy
= Hiding Individual

information

Goal: How to achieve utility while maintaining privacy?

voa / This lecture series;
But, before that: How do we define privacy? e.,» foundation and analysis




15t Attempt: Data Anonymization

Remove obvious identifiers (name, social security number) that uniquely identify an

individual before publishing the data

Convince ourselves that data

Name | Postal Code | Age | Sex | Has Disease? Name | Postal Code | Age | Sex | Has Disease?
Alice 02445 36 F 1 02445 36 F 1
Charlie 02118 66 M 1 02118 66 M 1

(Zora 02120 40 | F 1| ( 02120 40 | F 1|

/ora has the disease Now, we can't know that Zora has the disease
or, can we?

ls Data anonymization Safe?



Linkage Attack

Reidentification via Linkage: uniquely linking a
record in the anonymized dataset to a record in

Nome-

SEN— SSN a public dataset
Diagnosis Date last voted
Visit date Dateregistered |\ astimated 87% of the US population is

Medication

Party affiliation
Doctor info S

uniquely identified by the combination of their
age, sex, and postal code

Dataset 1: Anonymized Dataset 2: Public
medical data voter data

Quasi Identifiers

The Massachusetts Governor's privacy breach [Sweeney 2002 ]




Linkage in Practice: The Netflix Challenge

& & & & & | Alice o 2| & Alice
oY 4 Bob o Bob
S (P DD | o> & Charlie ___ |& |9 D [ Charlie
© v & Danielle  mmmm | &, 4 Danielle
o PP & v Erica & |99 Erica
P o Frank & & Frank
Anonymized Public, incomplete Identified NetFlix Data
NetFlix data IMDB data

* On average 4 movies uniquely identify a user
[Narayanan Shmatikov 2008]

* Reveal information on users' movie-watching
history, which they chose not to reveal publicly

Challenge: Improve the Netflix

Recommender system
Prize: US$1,000,000




2"d Attempt: K-Anonymization

|dentifier Quasi-ldentifier Sensitive attribute
A \ \ Sweeny 2002:
/ \ Y \ Y
Name | Postal Code | Age | Sex | Has Disease? Suppress/Generalize attributes
024 ! } to make every record in the dataset
— 0 indistinguishable from at least
(02l 1 k — 1 other records with respect to
x x the Quasi Identifiers
021 1 )

Now, we can't know that Zora has the disease, or, can we?

No! (everyone in the group has it)



Pitfalls of K-Anonymization: Composition

Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip code | Age [ Nationality Condition Zip code | Age | Nationality Condition
1 130** <30 . AIDS 1 130" <35 e AIDS
2 130*" <30 i Heart Disease 2 <35 o Tuberculosis
3 130*" <30 " Viral Infection - <35 3 Flu
4 130*" <30 ® Viral Infection 4 <35 5 Tuberculosis
5 130°° >40 g Cancer 5 | <35 - Cancer
6 130** >40 » Heart Disease 6 130** <35 5 Cancer
7 130** >40 . Viral Infection 77 130°* >35 : Cancer
8 130*" =40 » Viral Infection 8 130** >35 = Cancer
9 130** < g i 9 130** >35 s Cancer
10 130** 3* " 10 130** >35 : Tuberculosis
1 130" 3" - 11 130™* >35 7 Viral Infection
12 130** 3" . 12 130" >35 > Viral Infection

A 28 year old person visited both hospitals

2 hospital\relegge K anonymous tables for patients’ medical history

The person has AIDS

Ganta, Kashivishwanathan, Smith 2008




3rd Attempt: Release Aggregate Statistics

s granularity the problem?
What if we only release aggregate statistics about many individuals?

Name

Postal Code

Age

Sex

Has Disease?

Alice

02445

36

1

Bob

02446

18

M

0

Charlie

02118

66

M

1

Zora

02120

40

Now, can we know that Zora has the disease?

The company can ask for information like:

How many females have the disease?
How many females living in

[postal code] have the disease?

How many females living in

[postal code] and aged [year]

have the disease?

— Differencing Attack

Are releasing aggregate statistics safe?— Reconstruction Attack

— Membership Inference Attack



Differencing Attack

Company asks: How many females living in 02120 and aged 40 have the disease?

Known to tlhe company SenAsitive

[ | |  Say the answeris 1. Then it is very likely that
Name | Postal Code | Age | Sex | Has Disease? the company learned about Zora's disease
Alice 02445 36 F 1
Bob 02446 18 M 0
Charlie | 02118 66 | M 1 Counter-argument: If the answer is 1, are we
: : P : aggregating anything? What if the answer is 57
Zora 02120 40 F 1

Data with the health insurance provider of a company

The company now asks:
 How many females living in 02120 and aged = 40 have the disease?mmmp ANSWer: 5
* How many females living in 02120 and aged = 41 have the disease? s Answer: 4

Zora's privacy is breached if she is the only 40 years old female employee living in 02120



Reconstruction from Statistical Table

Are specific questions the problem? "Attack” on statistical disclosure methods
What if we ask for some “benign” information? used by US Census [Garfinkel et al 201 9]

Age

Group Count Median Mean

1 30

Total Population 7 30 38 2 30
Female 4 30 335 3 30

( Male 3 30 44| " -
Black or African Ameri 4 51 48.5 : o
ack or African American 5 6 30
White 3 24 24 7 30
Single Adults (D) (D) 8 30
Married Adults 4 9 30
Black or African American Female 3 36 36.7 10 30

Census releases tabulation of Statistics| Coynt=1
What can we learn from this table?

Prior knowledge: 1< M1, M2, M3 < 125 =) 341376 possible choldes for M1, M2, M3
From table: M2 = 30, M1+M24+M3 = 132, M1+M3 = 102~30 choices only




Reconstruction Attack

Recap: queries are of the form
How many individuals older than 40 have disease?

>

[dentifiers(z) Secrets(s)
A
_ | |
(—(@ Name | Postal Code | Age | Sex | Has Disease?
S Alice 02445 36 | F 1
'_CSj Bob 02446 18 | M 0
:5| [ Charlie 02118 66 | M 1
_g . . . :
C L.| Zora 02120 40 | F 1

]=

eg. zp = {Zora,02120,40,F},s, = 1

We want to release Count Statistics of the form

Query condition € {0,1}
7
¢(Z]) Sj What is ¢(z;) for the above query?

[P(z1), ... (zn)] [51,--- nl

J

F e {0,1}" s E {o 13"

&

A General Reconstruction Attack: A
Input: k query vectors Fy, ..., Fx € {0,1}* and k answers ay, ...,a; € R
Output: a vector of secrets § € {0,1}" that minimizes nel[a}g]( |F; - § — a;]

' J




Reconstruction Accuracy

Reconstruction Attack:

Input: k query vectors Fy, ..., F;, € {0,1}* and k answers aq, ...,a; € R
Output: a vector of secrets § € {0,1}" that minimizes max |F; - §

Hypothesis: each query is answered within error an, that is, nel[ak>]< |F; - s
l

i€[k]

— a;]

—a;| < an

Then the reconstruction error is at most 4an if the attacker makes k = 2™ queries

T~

/

number of entries where
the vectors s & § differ

But is this attack realistic?

Powerful attack: Recovers 96% of secret bits
even from answers with 1% error (think a = 1—(1)0)

Reconstruction using
all possible queries

No: it requires 2™ queries (exponential in the size of the dataset)

What if the number of queries are « 2™ ?




Reconstruction Accuracy

Reconstruction Attack:
Input: k query vectors Fy, ..., F;, € {0,1}* and k answers aq, ...,a; € R

Output: a vector of secrets § € {0,1}" that minimizes nel[ak>]< |F; - § — a;]
l

Hypothesis: each query is answered within error an, that is, né[ak>]< |Fi-s —ai| <an
l

Then the reconstruction error is at most O(a*n?) with probability 1 — 27™ if the attacker
makes k = 0(n) queries chosen uniformly at random from the set 2™ possible queries

Powerful attack: Recovers nearly all secret bits (reconstruction error < n)
1

7

But is this attack Computationally feasible? No: it requires to search over 2™ possible vectors

from answers with error « {/n (think a «

How can we make the attack run in time polynomial in n?



Reconstruction Attack (Compute Friendly)

Reconstruction Attack:
Input: k query vectors Fy, ..., F;, € {0,1}* and k answers aq, ...,a; € R

. 5 ) n i 5
| 10:4] i€[k] I i
Output: a vector of secrets § € R™ that minimizes nel[e}g]( |F; - § — a;| & round-off to § € {0,1}"
l
Hypothesis: each query is answered within error < +/n, that is, max |F;-s —a;| € +/n
l

Then nearly all secret bits are recovered with a very high probability if the attacker
makes k = 0(n) queries chosen uniformly at random from the set 2™ possible queries

Runs in time polynomial in dataset size

4/”_1 \
Linear programming in n variables & k = 0(n) constraints Rounding-off is Linear in n
But why does reconstruction attack work when error << \/n? What happens if we allow error = /n?

Membership Inference attacks



Reconstruction in Practice: The Diffix Challenge

Diffix: System for computing statistic

Secrets

SELECT count M 1oa?f//”’,,//J[)ﬁﬂx‘add
WHERE loanStatus = ‘C’

AND clientId BETWEEN 2000 and 3000

ldentifiers

Make SQL queries on a database while
Preventing disclosures about individuals

Can the system provide exact counts?

noise to -~ ‘/ | | |
the counts e No. Think about differencing attacks

Diffix knew about this

Recall: Efficient reconstruction requires random queries like

SELECT count(*) FROM loans
WHERE loanStatus = ‘C’

Cohen and Nissim 2018 Random enough query

SELECT COUNT(client ROM loans

AND (clientlId = 2
OR clientId = 2018

OR clientId = 2991)

o
| c No Reconstruction!

Queries of this form will be

answered with = vk error
(# of terms in query = k)

WHERE FLOOR (100 (clientId * 2)°0.7))

= FLOOR(100 * ((clientId * 2)~0.7) + 0.5)
AND clientId BETWEEN 2000 and 3000
AND loanStatu ¢C’

If terms are randomly
selected, then k = 0(n)
and hence error = \/n

Constant # of terms in query
Answered with error 0(1)

Full victim to Reconstruction!



Membership Inference Attack

Population
Distribution

- ~.OUT (drawn independently)

~
~
~

S
02120 | 40 | F | 1

n
o Name | Postal Code Has Disease? or
) Alice 02445 36 | F 1 ,
Q
O Bob e T3 M . IN (chosen unifor
==\ [Charlie | 02118 66 | M T | T T T T TTT T ~7
©O
= : 5 N :
c L] Zora 02120 40 | F 1

Query

Algorithm :

Aggregate statistics
Attacker gets

* Access to Algorithms output
* /ora's data

* Auxiliary information about population

target indiviglal

| . N or OUT

Attacker decides if Zora's data is in the dataset or not



Membership Inference Attack

J-th attribute ~ i.i.d. Bernoulli(p;)

k secret lattribut

A

n individuals
B= o |m|

O | = | O | =

= = o
[ I e T ™ Y

O | = | = | O

= O OO

k queries (each user answers
k yes/no questions)

Sample mean for each attribute?

—

IN (chosen uniforxal \
( 41 11 o o 15 To |1 |

or

N <OUT (drawn independently)

»

Noisy mean a = x

>

71

A9

.52

.80

.54

.20

75

.5

.5

75

.5

.25

~
~
~

target z

‘ N or OUT

Each query j € [k] is answered
within error |a; — %j| < a
where @ > —="=——

n

average statistics
(count statistics/n)




Membership Inference Attack

J-th attribute ~ i.i.d. Bernoulli(p;) A

k secret attribute |
I \\QUT(dravvn independently)

(U R— - ~
E 0 |1 |1 |o |1 |0 |oO or DR
kS IN (chosen uniforyl »
2 0o [1 |o |1 |o |1 |oO ___( _________ Y)|1 1 o |o |1 |0 |1 |
= 1 (0 |1 |1 |1 |1 |oO target
" 1 (1 |0 |0 |1 |0 |1
C ——
l Sample mean for each attribute?
Algorithm | . IN or OUT
Noisy mean a = x

Dwork et al 2015: 7 Fach query j € [k] is answered
There exists an attack such that whenk > nand a < o) : within error |?j — )?]| <a
. = —— 1t V\/here a = —

If target = IN, then P[IN] > e (True Positive) T . N

* If target = OUT, the P[IN] < 5 (False Positive) | 90% probability
when k = 1.1n




Membership Inference Attack

J-th attribute ~ i.i.d. Bernoulli(p;) A

k secret lattribut

- ~.OUT (drawn independently)

(U R— .
E 0 (1 |1 (0o |1 [0 |oO or ..
i) o 11 lo |1 1o 1 lo IN (chosen uniforxqly) 2\
L . L o B A 5501 11 Jo o |1 o |1 |
= 1 (o (1 (1 [1 |1 |oO target 7
" 1 |1 |0 [0 [1 |0 |1
(G -
l Sample mean for each attribute?

allelelgitaly : | . IN or OUT

Noisy mean a = x

Dwork et al 2015: Choose each p; ~ U[0,1]

E The Attack: — —
) nflog1/&) " If (a —p) - (z—p) = T return IN
* If target = IN, then P[IN] = —- (True Positive) else return OUT

a n

There exists an attack such that whenk > nanda <

2
» If target = OUT, the P[IN] < 8§ (False Positive) Set T =~ [k log(1/8) to make
false positive probability &




Membership Inference in Practice: ML vs. ML

Main insight: ML
models overfit on
the training dataset

N Population
Training dataset Distribution

.\\‘1/:/5\\.\?{{;\\\.\?{{ t features not from
P T AP E o T e )

predicted classification probabilities

Recognize the i/i7 !//,"‘\\\x//,"‘\\\?// P
ditferences in prediction II Train an Attack ML model based on

Shokri et al. 2017




The Attack Landscape

Reconstruction attack  Membership attack

k =0(n) k= 0(n) |
- , LCrror a for releasing
<= @
L vk average statistics
Jn n
/¥

Releasing too many statistics Releasing too many statistics with too
with too much accuracy necessarily much accuracy reveals the presence
determines the entire dataset of individual data in the dataset

* Every statistic released yields a (hard or soft) constraint on the dataset

* We need a quantitative theory that tells us *how much is too much”
and “how many is too many”




End of Lecture 1



Recap: The Attack Landscape

Reconstruction attack  Membership attack

k =0(n) k= 0(n) |
- , LCrror a for releasing
<= @
L vk average statistics
Jn n
/¥

Releasing too many statistics Releasing too many statistics with too
with too much accuracy necessarily much accuracy reveals the presence
determines the entire dataset of individual data in the dataset

We need a quantitative theory for “how much is too much” and *how many is too many”



Recap: Reconstruction Attack

|dentifiers (z) Secrets (s) Recap: we want to answer k queries of the form
A A -
| I ) F-s= z ¢(z)s; (count statistics)
(_U)s Name | Postal Code | Age | Sex | Has Disease? :
E Alice 02445 3 | F 1 J=1
= Bob 02446 18 | M 0 Reconstruction Attack:
2 | [Charlie | 02118 | 66 | M ! Input: queries Fy, ..., F, and answers ay, ..., a
= : : 2 : Output: secrets § that minimizes max |F; - § — q;
| Zora 02120 40 | F 1 i€[k]

Hypothesis: each query is answered within error < +/n, that is, max |F;-s —a;| K+/n
l

Then nearly all secret bits are recovered with a very high probability if the attacker
makes k = 0(n) queries chosen uniformly at random from the set 2™ possible queries

Reconstruction attack works when error < +/n



Preventing Reconstruction Attack

|dentifiers (z) Secrets(s) Recap: we want to answer k queries of the form
A A =

| Il 1 F-s= Z ¢(z)s; (count statistics)
n Name | Postal Code | Age | Sex | Has Disease? :
_gs Alice 02445 | 36 | F 1 =1
>_J[|_Bob 02446 18 | M 0 m random For each j € [m], pick ani € [n]
E Charlie 02118 66 | M 1 subsamples uniformly at random & set (Z]{,Sj') = (z;,5;)
- . . . . .

| Zora 02120 0F : Release answer:

Note: With high probability
Reconstruction Attack: Z qb(z )s max |F; - s —aj| <./nlogk
m

Input: queries Fy, ..., F, and answers a'y, ..., a’y A

0 < i i e Q — ,.
Output: secrets § that minimizes ?Elﬁg](m § —ayl error ~ Wl for k = 0(n) queries

But, does subsampling give privacy guarantee? But, reconstruction attack requires error < y/n

y v . ' m
Zora's data lie in the subsample with probab|l|ty; Hence, subsampling prevents reconstruction

S0, the same privacy concern remains

We need a theory to give accurate answers with rigorous privacy guarantees



Requirements of Privacy

: we need to be robust to whatever knowledge
an attacker may have since we cannot predict what she knows or might know in the future

: we need to be able to track how much information is
leaked when asking several questions about the same data

: we need to be able to do "meaningful statistical analysis™ of datasets



Privacy Definition: Attempt 1

An analysis of a dataset is private if the attacker's belief about an individual stays the same
after they see the result as it were before (no matter what they know before time)

Impossible to reveal nothing if the Before and after
result is to depend on the data (else requirement unachievable
we don't get any utility) Not quite therel after auxiliary knowledge

Health insurance
company knows
Alice is a smoker

company raises
Alice's insurance
premium

No: The company would have raised the

Does this breach Alice’s privacy? '
premium regardless of Alice’s participation

Such correlations are the kind of things we want to be able to learn



Privacy Definition: Attempt 2

An analysis of a dataset is private if the attacker would draw almost same conclusions

about an individual whether or not her data were used in the analysis (no matter what
they know before time)/Lﬁ k

Randomization is necessary
to be robust to auxiliary
knowledge

can't infer membership of an
individual in the dataset or can't
reconstruct any attribute about her

e
* Say, A is a non-trivial deterministic algorithm
=. S« For datasets D, D' differing only in a single record,
the same query q yields different outputs s, s’
q ' * An adversary knowing that the dataset is one of
. , D, D' can learn the differing record
> S



D|ffe re ntial Priva Cy (DP) Dwork, McSherry, Nissim and Smith [2006]

a random coins N\ a random coins N\
6 l [ < l |
X 1

® $~ Randomized A( D) .\ Randomized A( D )
& | algorithm , /\ x algorithm i /\

. X A . X A

‘/ distribution of A(D) ./ distribution of A(D")
\& Y - J

A thought experiment: ratio bounded

* Change, add or remove one person’s data
* Will the probabilities of the outcomes change?

probability

output range of A

Requirement of DP: Both distributions should be close



Differential Privacy (DP)

Dwork, McSherry, Nissim and Smith [2006]

-~

random coins

'

I 4

[

(] X1
0x\2‘
[ ——

Randomized
algorithm

A

A(D)

distribution of A(D)

Na

)

.\ Randomized A( D' )

®
L x algorithm |
=

random coins N\

'

distribution of A(D")

J

A thought experiment:

The randomized algorithm A is e-differentially private
if for all neighboring datasets D, D’ and for all outputs S:

* Change, add or remove one person’s data
* Will the probabiliti

Neighboring datasets

e outcomes change?

(a) P[A(D) € S] < e€ - P[A(D") € 5]

(b) P[A(D") € S] < e€ - P[A(D) € S]

Requirement of DP: Both distributions should be close (e = 0)



Two Conflicting Objectives

e random coins

& . —
\ Randomized A(D)

@ | algorithm :

~

distribution of A(D)

.
[

)

[ IUtiIi//ty }

%

Randomized

x algorithm , J\
&

random coins N\

'

distribution of A(D")

J

[ Privacy]

/_

Enable statistical analysis of
datasets e.g. inference about
population, training ML models

AN

Protect individual level data
against all attack strategies
and auxiliary information




Promises (and not) of DP

a random coins N\ a random coins N\

. | l .
?i\z‘ Randomized A( D) FELRRRIZCE A( D )

°
@& > algorithm | i\ algorithm | _
: A A .)v A /\
-

. Xn
‘/ distribution of A(D) distribution of A(D")

€
e
P[A(D) € S] ~ P[A(D') € S]
What DP promises ... What DP doesn't promise...
» Whatever an attacker learns about me, it could have * Protection for information that is not localized
learned from everyone else’s data to a few records
* Protection from the attacker’s auxiliary knowledge * Giving privacy where none previously exists

* Graceful composition for multiple queries (k repetitions) * Guarantee that individuals won't be "harmed”



DP Research and Deployments

i0S 10 and
Safari (2016)

Algorithms Crypt.o, StatlsFlcs, Game the.ory,
security Iearnlng economics
US census (2020)

* Approximation ¢ Multi-party * Histogram * Social network

algorithms computation « Contingency analysis
» Singular value ¢ Floating point tables * Mechanism

decomposition arithmetic » Regression design
+ Streaming ¢ Computational ¢ Estimation * Multi-agent RAPPOR for Chrome

Algorithms primitives  Clustering systems GO gle Statistics (2014)

Growing interest from many communities in seeing whether DP can be brought into practice
(databases, programming languages, medical informatics, law, social science, ...)



Comparison with other Privacy Models

Model Utility Privacy Data holder
Differential Statistical Individual Trusted server
Privacy analysis of information

dataset
Secure Function Any given query Everything other Users
Evaluation than result of
the query
Homomorphic  Any given query Everything Untrusted server
Encryption

Key principle: DP is a property of analysis and not of a particular output



Recap: Differential Privacy (DP)

a random coins N\ a random coins N\
6 l [ < l |
X 1
® x\:‘ Randomized A( D) .\ Randomized A( D )
@@ | algorithm : /\ x algorithm i /\
L X A . A
./ distribution of A(D) ./ distribution of A(D')

\& Y, \ & Y,

The randomized algorithm A is e-differentially private
if for all neighboring datasets D, D" and for all outputs S:

P[A(D) € S| <e€-P[A(D") € S]



How to achieve DP?

non-sensitive sensitive What fraction
A A has disease? | Data users
o ] ] (ex: government,
o Name | Postal Code | Age | Sex | Has Disease? < researchers
S Alice 02445 36 F 1 Randomized o
O , - companies,
2_] [ Bob 02446 18 | M 0 | algorithm P
5 Charlie 02118 66 | M 1 , or
< [ Zora 02120 20 | F 1 >
Answer + adversary)
Requirement: for all neighboring datasets D, D’ Noise(1/en)
and for all outputs S: N
P[A(D) € S] < e€-P[A(D") € S] Very little noise needed to hide

one individual as n » o

For meaningful privacy guarantee: 0 <e <1



Laplace Mechanism

n indii/iduals

non-sensitive sensitive

A |
|

Name | Postal Code | Age | Sex | Has Disease?
Alice 02445 36 F 1
Bob 02446 18 M 0
Charlie 02118 66 | M 1
Zora 02120 40 1

p(y;b) =

1
— exp

2b

Randomized
algorithm

A

PDF (with scale b):

What fraction
has disease?

<

Data users
(ex: government,

| @

Answer +

researchers,
companies,
or

adversary)

Laplace(1/en)

N~

vy

Density at y « exp(—en|y|)

How much noise should we add for a given query g7



Laplace Mechanism

non-sensitive sensitive

1 |\
n A ‘

S Name | Postal Code | Age | Sex | Has Disease?
= Alice 02445 36 | F 1
'_ng Bob 02446 18 | M 0
= — | Charlie 02118 66 | M 1
_g N . . : .
C | Zora 02120 40 F 1

Global sensitivity of a query q:
GSq = max |q(D) — q(D")|

D~Dr

Data users
(ex: government,

. researchers,
Randomized .

. companies,

algorithm
A or

| @

Answer + adversary)

Laplace(GS,/€)

/"~ THow sensftive a query

Neighboring datasets

W is to change in one

record in the dataset?

Density at y « exp(—€|y|/GSq)

Theorem: The mechanism A(D, q) = q(D) + Laplace(GS,;/¢€)is €-DP



Privacy Guarantee: Proof

In Board



Utility Guarantee

In Board



Properties of DP: Robust to Auxiliary Knowledge

A is €-DP if for all neighboring datasets D, D" and for all outputs S:
P[A(D) € S] < e€-P[A(D') € S]

Robust to arbitrary Bounds the relative advantage that an attacker
auxiliary knowledge gets by observing output of an algorithm

Attacker may know the dataset except one record
Attacker may have all external sources of knowledge

Algorithm A can be public (a key requirement for modern security)



Properties of DP: Postprocessing

Theorem: Let an algorithm A: D — § be €-DP and f:S — 0 be any (randomized) function.
Then, the composed algorithm f(A): D — O is also €-DP

Impossible to compute a function of the output  Allows data users to do whatever they
of a private algorithm and make it less private want with output of a private algorithm

Proof: In Board



Properties of DP: Basic Composition

D
il :
: :
| 4 L % |
| I
gy i -
5 3

Al: D — Sl IS El—DP

Theorem: Let A: D — §;X S, be an composed

algorithm that outputs (s1,s3) where s; = A1(D)
and Sy = Az(sl,D). Then A is (El + 62)-DP

Allows to control cumulative privacy for
multiple queries on the same dataset

A:51X D = Sy 0s €,-DP —— A,(s4,") is €,-DP for all s; € S;

Extends to k such DP algorithms
(one for each query): cumulative
privacy scales linearly with
number of queries

Can be improved using Advanced
Composition: cumulative privacy
scales sub-linearly with number
of queries




Proof: Basic Composition

In Board



Privacy Accounting

Trade-off needed b/w
accuracy and number

of queries (for given
What if total allowed privacy loss is €97 Need to set € = €9/k | privacy loss)

Composition: If A is e-DP for one query, then
it is ke-DP for k queries

More queries =) Smgller ¢ =) | ess gccuracy for answering each query

Composition (+ post-processing) allow designing DP algorithms which

1. Can ask multiple low-sensitivity queries / Classic ML example:
2. Can tolerate noisy answer to the queries Stochastic Gradient

Descend (SGD)




Setting €: Group Privacy

Theorem: Let D4, D, be two datasets of n records that differ in 1 < k < n positions. If an
algorithm A is €-DP, then for all outputs §, we have

P[A(D,) € S] < e*€.PI[A(D,) €S] .

/ \‘ Different than composition

- 1 Hide participation of
eedto set € = —for 1. An individual who contribute several records

reasonable utility 2. Groups of people whose data are strongly correlated

If e KL % then regardless of number of differing positions k,

DP algorithms c"t e distributions of A(D;) and A(D,) are almost same

give useful output for

mmmm) [0 ensure high privacy, the algorithm ignores its input
small datasets




Proof: Group Privacy

In Board



End of Lecture 2



Till Now: Numeric Queries

non-sensitive sensitive

1 |\
n A ‘

S Name | Postal Code | Age | Sex | Has Disease?
= Alice 02445 36 | F 1
'_CSj Bob 02446 18 | M 0
= — | Charlie 02118 66 | M 1
< ; ; ; ;
C | Zora 02120 40 F 1

What fraction
has disease?

<&
<

Randomized
algorithm

A

Answer +

Useful only if similar answers
have similar utility

Not satisfied always

Buyer | Offer
Alice 3€
Bob L€

Noise(1/en)

I

Output perturbation

Data users
(ex: government,
researchers,
companies,
or

adversary)

Find profits for the following prices:

[3,3.01, 4,401, ...)




Privacy for Non-numeric Queries

1. Which CS theory lecture is popular Y = {Matching, Zero-knowledge protocal,
among students? Differential privacy, ...}
2. What is the most popular Al model? Y = {GPT4, Llama, Phi2, Gemini, ...}

3. Which price would make the most profit Y ={3,63.01, 4, 401, ...}
from buyers?

Global Sensitivity of a utility function u: Query q:D »Y
GS, = max max lu(D,y) —u(D', y)| Utility function u: D x Y = R

Neighboring datasets How good is to return y when query is g7



Exponential Mechanism

non-sensitive sensitive
A A
(—(@ | Name | Postal Code | Age | Sex | (Lectures )
S Alice 02445 36 | F DP
'_C;j Bob 02446 18 | M Matching
7] | Charlie | 02118 66 | M 7KP
£ : : : :
< L | Zora 02120 490 | F | U ZKP

Global Sensitivity of a utility function u:
GS, = max max |[u(D,y) —u(D’,y)|

Theorem: The mechanism that answers y € Y with probability

P[A(D) = y] «x exp(e - e ) is €-DP

yeY

D~Dr

u(D,y)

u

Non-numeric
query g

Randomized
algorithm

A

Answery € Y

with probability &« exp(€ -

1

Data users
(ex: government,
researchers,
companies,
or

adversary)

u(D,y)
2GSy,

High utility answers
exponentially more likely

)



Privacy Guarantee: Proof

For all y € Y, we need to bound the ratio Upper bound on Global Sensitivity:

P[A(D)=y] GS, = max max |[u(D,y) —u(D’,y)| < A
P[A(D)=Y] yer b=br
_ u(,y) P[A(D)=Y] exp(e-L22)
We have P[A(D) = ] < exp(€ - A ) See that yio_ 24
P[A(D’)zy] exp(e%)
What is the )
oroportionality | Itis C(D) = meED l
constant here? Zyrey &P (€755
Re-write this as
D,y) —u(D'’
The ratio of proportionality constants exp(e - wib,y) — u( ,y))
is also upper bounded by exp(€/2) o 24
Then, for all y € Y, we bound the ratio as This is upzer— bounded by
PlAD)=y] < exp(e/2) -exp(e/2)= exp(€) exp(€ - 5+ )= exp(€/2)

P[A(D))=Y] 2A



Report Noisy Max Mechanism

non-sensitive sensitive Non-numeric
Data users
A A query q
n o~ (ex: government,
o Name | Postal Code | Age | Sex | ("Lectures ) researchers
= Alice 02445 36 | F DP Randomized com anies'
'_CSB.< Bob 02446 18 | M Matching algorithm P '
5 Charlie 02118 66 | M ZKP ? or
< - RN A A
< | [ Zora 02120 0 | F | ZKp ) >
adversary)
Answer argmaxyey{ u(D,y) + Zy}
Global Sensitivity of a utility function u: where each Z,, ~ Exp (2224 s
GS, = max max |u(D,y) — u(D'’ T
Y yey D~Dr u(D,y) (D", y)] Independent a ntically distributed

Exponential distribution has

Theorem: The mechanism Report Noisy Max is e-DP 1 y
PDF: p(y; 1) = - exp (—E),y > 0




Recap: Differential Privacy

a random coins N\ a random coins N\

l l
[
.&A Randomized A( D) .\ Randomized A( DI )

® Xx

[
@& > algorithm | x algorithm |
Xn A /\ Xn A /\
‘/ \&/

distribution of A(D) distribution of A(D")

Na / /

The randomized algorithm A is e-differentially private
if for all neighboring datasets D, D" and for all outputs S:

P[A(D) € S] < e€ - P[A(D') € S]



Variant: Approximate Differential Privacy

a random coins ™\ a random coins ™\
& l [ < l |
X 1
® $§ Randomized A( D) .\ Randomized A( D )
& | algorithm , /\ x algorithm i /\
X A . Xn A
./ distribution of A(D) ./ distribution of A(D')

\ & Y, &

/

A is e-DP with L The randomized algorithm A is (€, 6)-differentially private
probability at least |/ if for all neighboring datasets D, D" and for all outputs S:

1=9 P[A(D) € S] < e€ - P[A(D") € §] +@

Makes sense only

when & « % Pick a random person from the dataset and

Publish her data (0,%) _DP




Recap: Laplace Mechanism for Pure DP

non-sensitive sensitive

| |
n ‘

S Name | Postal Code | Age | Sex | Has Disease?
= Alice 02445 36 | F 1
'_C;j Bob 02446 18 | M 0
= = [ Charlie 02118 66 | M 1
< : : : :
C | Zora 02120 40 F 1

Global sensitivity of a query q:
GSq = max |q(D) — q(D)|

Randomized
algorithm

A

Data users
(ex: government,

Query q

researchers,
companies,
or

| @

Answer + adversary)

Laplace(GS,/€)



Gaussian Mechanism for Approximate DP

n indii/iduals

non-sensitive sensitive
A A \ Query q
Name | Postal Code | Age | Sex | Has Disease? <
Alice 02445 36 F 1 Randomized
Charlie 02118 66 | M 1 ’ A
Zora 02120 40 F 1

08
06
04

02

0.0
Ll

Answer +

Data users
(ex: government,
researchers,
companies,
or

adversary)

Gaussian (0, 21og(1/8)GS5 /€*)

)2
Pl o) = o (~ U5 )

Theorem:

A(D,q) = q(D) + Gaussian(0, 2log(1/8)GSg /€*)

is (€,0)-DP (approximate DP)




Advanced Composition for Approximate DP

D
I S e S —— A :
[ I
| A A, Ag — o o0 Ay |
: _ :
Lo o o o o o o o o o o e e - - I
1 ]
51 SZ 53 Sk
A1:D - Sy is (€,6)-DP Theorem: Let A: D — §1X §,X ---XS§}, be an composed

algorithm that outputs (s1, S, ***, Sx) Where s; = A1(D),
Sy, = Az(Sl,D), Y Ak(sl, tee ,Sk_l,D).Then Ais
€', 6')-DP, where

(
€' = €\/2k log(1/8,) + ke

AZ:Slx D - SZ IS (E, 6)—DP

A3:51X Szx D - 53 S (E, 6)—DP

= * L and 8’ = k& + 6,
ef+1
| ﬂ
Ap: 51X 53X+ Sp_1 X D > S is(€,6)-DP Lower order term (e€ =

Some constant > O | | 1 + ¢ for small €)
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