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Data Privacy

The ability of  an individual to seclude themselves or to 
withhold information about themselves



Data are everywhere
Massive collection of  personal data by companies and public organizations, driven
by the progress of  data science and AI

Data is increasingly sensitive and detailed: browsing history, purchase history, social
network posts, speech, geolocation, health...



Machine Learning on our Data 



Data Privacy: The Problem



Data Privacy: The Problem

How our data are collected?



Data Privacy: The Problem

Websites that track 
our data



Data Privacy: The Problem

Modern ML models almost memorize inputs (e.g. Autocomplete feature in Gmail)

Support vectors reveal training data LLMs reveal Sensitive information
     (by adversarial prompting) 



Data Privacy: The Problem

Given a database with sensitive information such as

§ credit card number, passwords, …

§ name, age, gender, bank details, biometrics, …

§ medical records, political opinions, religious beliefs, …

How can we

 
§ ensure desirable uses of  the data

§ while protecting the privacy of  the data subjects? 

Credentials

Policy formation, Clinical trials, Sentiment analysis, 
Searching for fraud, Academic research, ….

Identification Information

Sensitive Information

Hiding individual 
information



Privacy in Statistical Databases

Statistical analysis benefits 
society

Large collection of personal 
information



Two Conflicting Objectives

Releasing Aggregate 
Statistics 

Hiding Individual 
information 

Goal: How to achieve utility while maintaining privacy?

This lecture series; 
foundation and analysis But, before that: How do we define privacy?



1st Attempt: Data Anonymization
Remove obvious identifiers (name, social security number) that uniquely identify an 
individual before publishing the data

Is Data anonymization Safe?

Zora has the disease Now, we can’t know that Zora has the disease

or, can we?

Convince ourselves that data cannot be fully anonymized AND remain useful



Linkage Attack

The Massachusetts Governor’s privacy breach [Sweeney 2002]

Name
SSN
Diagnosis
Visit date
Medication
Doctor info

Postal
code
Age
Sex

Name
SSN
Date last voted
Date registered
Party affiliation
Address

Dataset 1: Anonymized 
medical data

Dataset 2: Public 
voter data

Reidentification via Linkage: uniquely linking a 
record in the anonymized dataset to a record in 
a public dataset

An estimated 87% of  the US population is 
uniquely identified by the combination of  their 
age, sex, and postal code

Quasi Identifiers 



Linkage in Practice: The Netflix Challenge

• On average 4 movies uniquely identify a user
[Narayanan Shmatikov 2008]
• Reveal information on users' movie-watching 
history, which they chose not to reveal publicly

Challenge: Improve the Netflix
Recommender system
Prize: US$1,000,000



2nd Attempt: K-Anonymization

Identifier Quasi-Identifier Sensitive attribute

Now, we can’t know that Zora has the disease,

Sweeny 2002:

Suppress/Generalize attributes 
to make every record in the dataset 
indistinguishable from at least 
k − 1 other records with respect to 
the Quasi Identifiers

or, can we?

No! Can still infer that Zoya has the disease (everyone in the group has it)



Pitfalls of K-Anonymization: Composition 

Ganta, Kashivishwanathan, Smith 2008 

2 hospital release K anonymous tables for patients’ medical history

A 28 year old person visited both hospitals The person has AIDS



3rd Attempt: Release Aggregate Statistics

Now, can we know that Zora has the disease?

Is granularity the problem? 
What if  we only release aggregate statistics about many individuals? 

The company can ask for information like: 
• How many females have the disease?
• How many females living in
    [postal code] have the disease? 
• How many females living in
    [postal code] and aged [year] 
    have the disease?

Are releasing aggregate statistics safe?

Data with the health insurance provider of  a company

Differencing Attack

Reconstruction Attack

Membership Inference Attack



Differencing Attack

Company asks: How many females living in 02120 and aged 40 have the disease?

Say the answer is 1. Then it is very likely that
the company learned about Zora’s disease

Data with the health insurance provider of  a company

Known to the company Sensitive

Counter-argument: If  the answer is 1, are we 
aggregating anything? What if  the answer is 5?

The company now asks: 
• How many females living in 02120 and aged ≥ 40 have the disease?
• How many females living in 02120 and aged ≥ 41 have the disease?

Answer: 5
Answer: 4

Zora’s privacy is breached if  she is the only 40 years old female employee living in 02120 



Reconstruction from Statistical Table

Prior knowledge: 1≤ M1, M2, M3 ≤ 125

“Attack” on statistical disclosure methods 
used by US Census [Garfinkel et al 2019]

Are specific questions the problem? 
What if  we ask for some “benign” information? 

Census releases tabulation of  Statistics 
What can we learn from this table? 

Count=1

From table: M2 = 30, M1+M2+M3 = 132, M1+M3 = 102

341376 possible choices for M1, M2, M3
30 choices only

Already r
eveals

 a 
lot o

f  

inform
atio

n



Reconstruction Attack

A General Reconstruction Attack:
Input: 𝑘	query vectors 𝐹!, … , 𝐹" ∈ 0,1 # and 𝑘 answers 𝑎!, … , 𝑎" ∈ R
Output: a vector of  secrets 𝑠̃ ∈ 0,1 # that minimizes max

$∈["]
|𝐹$ ⋅ 𝑠̃ 	− 𝑎$|

Identifiers(z) Secrets(s)

n 
in

di
vi

du
al

s

e.g. 𝑧# = 𝑍𝑜𝑟𝑎, 02120, 40, 𝐹 , 𝑠# = 1

Recap: queries are of  the form 
How many individuals older than 40 have disease?

Query condition ∈ {0,1}

What is 𝜙(𝑧!) for the above query?,
"#$

%

𝜙 𝑧" 	𝑠"

= 𝜙 𝑧! , … , 𝜙 𝑧# ⋅ [𝑠!, … 𝑠#]

We want to release Count Statistics of  the form

𝐹 ∈ 0,1 # 𝑠 ∈ 0,1 #



Reconstruction Accuracy
Reconstruction Attack:
Input: 𝑘	query vectors 𝐹!, … , 𝐹" ∈ 0,1 # and 𝑘 answers 𝑎!, … , 𝑎" ∈ R
Output: a vector of  secrets 𝑠̃ ∈ 0,1 # that minimizes max

$∈["]
|𝐹$ ⋅ 𝑠̃ 	− 𝑎$|

Then the reconstruction error is at most 4𝛼𝑛 if  the attacker makes 𝑘 = 2# queries

number of  entries where 
the vectors 𝑠	&	𝑠̃ differ

Reconstruction using 
all possible queries 

Powerful attack: Recovers 96% of  secret bits 

even from answers with 1% error (think 𝛼 = !
!""

)

But is this attack realistic? No: it requires 2# queries (exponential in the size of  the dataset)  

What if  the number of  queries are ≪ 2#  ?

Hypothesis: each query is answered within error 𝛼𝑛, that is, max
$∈["]

𝐹$ ⋅ 𝑠	 − 𝑎$ ≤ 𝛼𝑛



Reconstruction Accuracy
Reconstruction Attack:
Input: 𝑘	query vectors 𝐹!, … , 𝐹" ∈ 0,1 # and 𝑘 answers 𝑎!, … , 𝑎" ∈ R
Output: a vector of  secrets 𝑠̃ ∈ 0,1 # that minimizes max

$∈["]
|𝐹$ ⋅ 𝑠̃ 	− 𝑎$|

Hypothesis: each query is answered within error 𝛼𝑛, that is, max
$∈["]

𝐹$ ⋅ 𝑠	 − 𝑎$ ≤ 𝛼𝑛

Then the reconstruction error is at most O(𝛼/𝑛/) with probability 1 − 20# if  the attacker 
makes 𝑘 = 𝑂(𝑛) queries chosen uniformly at random from the set 2# possible queries

But is this attack Computationally feasible? No: it requires to search over 2# possible vectors 

How can we make the attack run in time polynomial in 𝑛?

Powerful attack: Recovers nearly all secret bits (reconstruction error ≪ 𝑛) 

from answers with error ≪ 𝑛 (think 𝛼 ≪ !
#
)



Reconstruction Attack (Compute Friendly) 
Reconstruction Attack:
Input: 𝑘	query vectors 𝐹!, … , 𝐹" ∈ 0,1 # and 𝑘 answers 𝑎!, … , 𝑎" ∈ R
Output: a vector of  secrets 𝑠̃ ∈ 0,1 # that minimizes max

$∈["]
|𝐹$ ⋅ 𝑠̃ 	− 𝑎$|

Runs in time polynomial in dataset size 

But why does reconstruction attack work when error ≪ 𝑛? What happens if  we allow error ≥ 𝑛?

Rounding-off  is Linear in 𝑛Linear programming in 𝑛 variables & 𝑘 = 𝑂(𝑛) constraints

Output: a vector of  secrets 𝑠̂ ∈ ℝ# that minimizes max
$∈["]

|𝐹$ ⋅ 𝑠̂ 	− 𝑎$| & round-off  to 𝑠̃ ∈ 0,1 # 

Hypothesis: each query is answered within error	≪ 𝑛, that is, max
$∈["]

𝐹$ ⋅ 𝑠	 − 𝑎$ ≪ 𝑛

Then nearly all secret bits are recovered with a very high probability if  the attacker 
makes 𝑘 = 𝑂(𝑛) queries chosen uniformly at random from the set 2# possible queries

Membership Inference attacks



Reconstruction in Practice: The Diffix Challenge

Cohen and Nissim 2018

Diffix: System for computing statistic
Secrets

Identifiers

Make SQL queries on a database while 
Preventing disclosures about individuals

Can the system provide exact counts?

No. Think about differencing attacks

Diffix add 
noise to 
the counts

Recall: Efficient reconstruction requires random queries like

Diffix knew about this

Queries of  this form will be 
answered with ≥ 𝑘 error 
(# of  terms in query = 𝑘)

If  terms are randomly 
selected, then 𝑘 = 𝑂 𝑛
and hence error ≥ 𝑛No Reconstruction!

Random enough query

Constant # of  terms in query
Answered with error 𝑂(1)

Full victim to Reconstruction!



Membership Inference Attack

n 
in

di
vi

du
al

s

Population 
Distribution 

IN(chosen uniformly)

OUT(drawn independently)

IN or OUT

Attacker gets
• Access to Algorithms output
• Zora’s data
• Auxiliary information about population

Attacker decides if  Zora’s data is in the dataset or not

or

Query

Aggregate statistics
Algorithm

target individual



Membership Inference Attack 

n 
in

di
vi

du
al

s

k secret attributes

Algorithm

Sample mean for each attribute?

Noisy mean 𝑎	 ≈ 𝑥̅

𝑥̅
𝑎 Each query 𝑗 ∈ [𝑘] is answered 

within error 𝑎$ − 2x$ ≤ 𝛼	
where 𝛼 ≥ !

#
 

𝑝

IN(chosen uniformly)

OUT(drawn independently)

IN or OUT

target z

𝑘 queries (each user answers
𝑘 yes/no questions)

j-th attribute ∼ i.i.d. Bernoulli(𝑝!)  

average statistics 
(count statistics/n)

or



Membership Inference Attack

n 
in

di
vi

du
al

s

k secret attributes

Algorithm

Sample mean for each attribute?

Noisy mean 𝑎	 ≈ 𝑥̅
Each query 𝑗 ∈ [𝑘] is answered 
within error 𝑎$ − 2x$ ≤ 𝛼	
where 𝛼 ≥ !

#
 

𝑝

IN(chosen uniformly)

OUT(drawn independently)

IN or OUT

There exists an attack such that when 𝑘 ≥ 𝑛 and 𝛼 < %
# &'((!/+)	

:

• If  target = IN, then 𝑃 IN ≥ !
."#

  (True Positive)

• If  target = OUT, the 𝑃 IN ≤ 𝛿    (False Positive)
succeeds with 
90% probability 
when 𝑘 = 1.1𝑛 

Dwork et al 2015:

or

target z

j-th attribute ∼ i.i.d. Bernoulli(𝑝!)  



Membership Inference Attack

n 
in

di
vi

du
al

s

k secret attributes

Algorithm

Sample mean for each attribute?

Noisy mean 𝑎	 ≈ 𝑥̅

𝑝

IN(chosen uniformly)

OUT(drawn independently)

IN or OUT

There exists an attack such that when 𝑘 ≥ 𝑛 and 𝛼 < %
# &'((!/+)	

:

• If  target = IN, then 𝑃 IN ≥ !
."#

  (True Positive)

• If  target = OUT, the 𝑃 IN ≤ 𝛿    (False Positive)

The Attack:
 If  (𝑎 − 𝑝) ⋅ (𝑧 − 𝑝) ≥ 𝜏 return IN 
else return OUT 

Set 𝜏 ≈ 𝑘	log(1/𝛿) to make 
false positive probability 𝛿

Choose each 𝑝! ∼ U[0,1]

target z

or

j-th attribute ∼ i.i.d. Bernoulli(𝑝!)  

Dwork et al 2015:



Membership Inference in Practice: ML vs. ML

Prediction 
API

Population 
Distribution 

Input features from
training dataset

Input features not from
training dataset

Training dataset

Recognize the 
differences in prediction Train an Attack ML model based on 

predicted classification probabilities

Main insight: ML 
models overfit on 
the training dataset

Shokri et al. 2017



The Attack Landscape

• Every statistic released yields a (hard or soft) constraint on the dataset
 
• We need a quantitative theory that tells us “how much is too much” 
    and “how many is too many”

Error 𝛼 for releasing
average statistics1

𝑛
𝑘
𝑛

Reconstruction attack Membership attack

Releasing too many statistics with too 
much accuracy reveals the presence 
of  individual data in the dataset

Releasing too many statistics
with too much accuracy necessarily 
determines the entire dataset

𝑘 ≥ 𝑂(𝑛)𝑘 = 𝑂(𝑛)



End of Lecture 1



Recap: The Attack Landscape

We need a quantitative theory for “how much is too much” and “how many is too many”

Error 𝛼 for releasing
average statistics1

𝑛
𝑘
𝑛

Reconstruction attack Membership attack

Releasing too many statistics with too 
much accuracy reveals the presence 
of  individual data in the dataset

Releasing too many statistics
with too much accuracy necessarily 
determines the entire dataset

𝑘 ≥ 𝑂(𝑛)𝑘 = 𝑂(𝑛)



Recap: Reconstruction Attack

Reconstruction Attack:
Input: queries 𝐹!, … , 𝐹%  and answers 𝑎!, … , 𝑎%
Output: secrets 𝑠̃ that minimizes max

/∈[%]
|𝐹/ ⋅ 𝑠̃ 	− 𝑎/|

Identifiers(z) Secrets(s)

n 
in

di
vi

du
al

s

Recap: we want to answer k queries of  the form

𝐹 ⋅ 𝑠 =C
34!

#

𝜙 𝑧3 	𝑠3 (count statistics)

Hypothesis: each query is answered within error	≪ 𝑛, that is, max
$∈["]

𝐹$ ⋅ 𝑠	 − 𝑎$ ≪ 𝑛

Then nearly all secret bits are recovered with a very high probability if  the attacker 
makes 𝑘 = 𝑂(𝑛) queries chosen uniformly at random from the set 2# possible queries

Reconstruction attack works when error ≪ 𝑛 



Preventing Reconstruction Attack

Reconstruction Attack:
Input: queries 𝐹!, … , 𝐹%  and answers 𝑎′!, … , 𝑎′%
Output: secrets 𝑠̃ that minimizes max

/∈[%]
|𝐹/ ⋅ 𝑠̃ 	− 𝑎′/|

Identifiers(z) Secrets(s)

n 
in

di
vi

du
al

s

Recap: we want to answer k queries of  the form

For each 𝑗 ∈ [𝑚], pick an	𝑖 ∈ [𝑛] 
uniformly at random & set 𝑧35, 𝑠35 = (𝑧/ , 𝑠/) 

𝐹 ⋅ 𝑠 =C
34!

#

𝜙 𝑧3 	𝑠3

Release answer:

𝑎′ =
𝑛
𝑚C

34!

6

𝜙 𝑧35 𝑠35
Note: With high probability

max
/∈[%]

𝐹/ ⋅ 𝑠	 − 𝑎/5 ≤ 𝑛	log𝑘

error ≈ 𝑛	log𝑛 for 𝑘 = 𝑂 𝑛  queries 

But, reconstruction attack requires error ≪ 𝑛 

Hence, subsampling prevents reconstruction

𝑚 random 
subsamples 

But, does subsampling give privacy guarantee?

Zora’s data lie in the subsample with probability 
6
#

So, the same privacy concern remains

(count statistics)

We need a theory to give accurate answers with rigorous privacy guarantees



Requirements of Privacy

Protection against auxiliary knowledge: we need to be robust to whatever knowledge 
an attacker may have since we cannot predict what she knows or might know in the future

Protection against multiple analyses: we need to be able to track how much information is 
leaked when asking several questions about the same data

Achieving utility: we need to be able to do “meaningful statistical analysis” of  datasets



Privacy Definition: Attempt 1

Does this breach Alice’s privacy?  

An analysis of  a dataset is private if  the attacker’s belief  about an individual stays the same 
after they see the result as it were before (no matter what they know before time)

Impossible to reveal nothing if  the 
result is to depend on the data (else 
we don’t get any utility)

Before and after 
requirement unachievable 
after auxiliary knowledge

Health insurance 
company knows 
Alice is a smoker

company raises 
Alice’s insurance 
premium 

No: The company would have raised the 
premium regardless of  Alice’s participation  

Such correlations are  the kind of things we want to be able to learn

Not quite there!



Privacy Definition: Attempt 2

An analysis of  a dataset is private if  the attacker would draw almost same conclusions
about an individual whether or not her data were used in the analysis (no matter what 
they know before time)

• Say, 𝐴 is a non-trivial deterministic algorithm 

• For datasets 𝐷, 𝐷′ differing only in a single record, 
   the same query 𝑞 yields different outputs 𝑠, s′

• An adversary knowing that the dataset is one of
 𝐷, 𝐷′ can learn the differing record

can’t infer membership of  an 
individual in the dataset or can’t 
reconstruct any attribute about her

Randomization is necessary 
to be robust to auxiliary 
knowledge

𝑞

𝑞

A

A

𝐷

𝐷′

𝑠

𝑠′



Differential Privacy (DP)

A thought experiment:
• Change, add or remove one person’s data
• Will the probabilities of  the outcomes change?

Requirement of  DP: Both distributions should be close 

Dwork, McSherry, Nissim and Smith [2006]



Differential Privacy (DP)

A thought experiment:
• Change, add or remove one person’s data
• Will the probabilities of  the outcomes change?

The randomized algorithm A is 𝜖-differentially private 

Neighboring datasets

if  for all neighboring datasets 𝐷, 𝐷′	and for all outputs 𝑆: 

(a) 𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃[𝐴 𝐷9 ∈ 𝑆]

(b) 𝑃 𝐴 𝐷′ ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃[𝐴(𝐷) ∈ 𝑆]

(𝜖 ≈ 0)

Dwork, McSherry, Nissim and Smith [2006]

Requirement of  DP: Both distributions should be close 



Two Conflicting Objectives 

Enable statistical analysis of  
datasets e.g. inference about 
population, training ML models

Protect individual level data 
against all attack strategies 
and auxiliary information



Promises (and not) of DP

• Whatever an attacker learns about me, it could have 
     learned from everyone else’s data

• Protection from the attacker’s auxiliary knowledge

• Graceful composition for multiple queries (k repetitions)

• Protection for information that is not localized 
     to a few records

• Giving privacy where none previously exists

• Guarantee that individuals won’t be “harmed” 

𝑃 𝐴 𝐷 ∈ 𝑆 	≈ 	𝑃[𝐴 𝐷9 ∈ 𝑆]
𝑒8

What DP promises … What DP doesn’t promise…



DP Research and Deployments 

• Approximation 
algorithms

• Singular value 
decomposition

• Streaming 
     Algorithms
          …..
 

• Multi-party
    computation
• Floating point 

arithmetic
• Computational
     primitives
          …..
 

• Social network 
analysis

• Mechanism
     design
• Multi-agent 
     systems
            …..
 

• Histogram
• Contingency 

tables
• Regression
• Estimation
• Clustering
         …..
 

iOS 10 and 
Safari (2016)
 

US census (2020)

RAPPOR for Chrome 
Statistics (2014) 
          
 

Growing interest from many communities in seeing whether DP can be brought into practice 
(databases, programming languages, medical informatics, law, social science, …)



Comparison with other Privacy Models

       Model         Utility        Privacy     Data holder

Differential 
Privacy

Statistical 
analysis of 
dataset

Individual 
information

Trusted server

Secure Function 
Evaluation

Any given query Everything other 
than result of 
the query

Users

Homomorphic 
Encryption

Any given query Everything Untrusted server

Key principle: DP is a property of  analysis and not of  a particular output



Recap: Differential Privacy (DP)

The randomized algorithm A is 𝜖-differentially private 
if  for all neighboring datasets 𝐷, 𝐷′	and for all outputs 𝑆: 

𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃[𝐴 𝐷9 ∈ 𝑆]



How to achieve DP?

n 
in

di
vi

du
al

s

What fraction 
has disease?

For meaningful privacy guarantee: 0 < 𝜖 ≤ 1

sensitivenon-sensitive

Answer + 
Noise(1/𝜖𝑛)

Very little noise needed to hide 
one individual as 𝑛 → ∞

Requirement: for all neighboring datasets 𝐷, 𝐷′	
and for all outputs 𝑆: 

𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃[𝐴 𝐷9 ∈ 𝑆]



Laplace Mechanism

n 
in

di
vi

du
al

s

What fraction 
has disease?

sensitivenon-sensitive

Answer + 
Laplace(1/𝜖𝑛)

PDF(with scale 𝑏):

Density at 𝑦 ∝ exp(−𝜖𝑛|𝑦|)

How much noise should we add for a given query q? 



Laplace Mechanism

n 
in

di
vi

du
al

s

Query 𝑞
sensitivenon-sensitive

Answer + 
Laplace(G𝑆:/𝜖)

Density at 𝑦 ∝ exp(−𝜖|𝑦|/𝐺𝑆:)

Global sensitivity of  a query 𝑞:
𝐺𝑆: = max

;~;9
	|𝑞 𝐷 − 𝑞 𝐷9 |

Neighboring datasets

Theorem: The mechanism 𝐴 𝐷, 𝑞 = 𝑞 𝐷 + Laplace(G𝑆:/𝜖)is 𝜖-DP

How sensitive a query 
is to change in one 
record in the dataset?



Privacy Guarantee: Proof
In Board



Utility Guarantee
In Board



Properties of DP: Robust to Auxiliary Knowledge

	A is 𝜖-DP if  for all neighboring datasets 𝐷, 𝐷′	and for all outputs 𝑆: 

𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃[𝐴 𝐷9 ∈ 𝑆]

Robust to arbitrary 
auxiliary knowledge

Bounds the relative advantage that an attacker 
gets by observing output of  an algorithm 

Attacker may know the dataset except one record

Attacker may have all external sources of  knowledge

Algorithm A can be public (a key requirement for modern security)



Properties of DP: Postprocessing

Impossible to compute a function of  the output 
of  a private algorithm and make it less private

Theorem: Let an algorithm 𝐴: 𝐷 → 𝑆 be 𝜖-DP and 𝑓: 𝑆 → 𝑂 be any (randomized) function.
Then, the composed algorithm 𝑓 𝐴 : 𝐷 → 𝑂 is also 𝜖-DP 

Allows data users to do whatever they 
want with output of  a private algorithm

Proof: In Board



Properties of DP: Basic Composition

Theorem: Let 𝐴: 𝐷 → 𝑆!×	𝑆/ be an composed 
algorithm that outputs (𝑠!, 𝑠/) where 𝑠! = 𝐴!(𝐷) 
and 𝑠/ = 𝐴/(𝑠!, 𝐷). Then 𝐴 is (𝜖! + 𝜖/)-DP 

𝐴!: 𝐷 → 𝑆! is 𝜖!-DP

𝐴/: 𝑆!×	𝐷 → 𝑆/ is 𝜖/-DP 𝐴/ 𝑠!,⋅  is 𝜖/-DP for all 𝑠! ∈ 𝑆!

Allows to control cumulative privacy for
multiple queries on the same dataset 

Extends to 𝑘 such DP algorithms 
(one for each query): cumulative 
privacy scales linearly with 
number of  queries

Can be improved using Advanced 
Composition: cumulative privacy 
scales sub-linearly with number 
of  queries

D

𝑆! 𝑆/



Proof: Basic Composition
In Board



Privacy Accounting

Composition: If  𝐴 is 𝜖-DP for one query, then 
it is 𝑘𝜖-DP for 𝑘 queries

What if  total allowed privacy loss is ϵ=? Need to set 𝜖 = ϵ=/k

More queries Smaller 𝜖 Less accuracy for answering each query

Trade-off  needed b/w 
accuracy and number 
of  queries (for given 
privacy loss)

Composition (+ post-processing) allow designing DP algorithms which

1. Can ask multiple low-sensitivity queries
2. Can tolerate noisy answer to the queries

Classic ML example: 
Stochastic Gradient 
Descend (SGD)



Setting 𝝐: Group Privacy

Hide participation of  
1. An individual who contribute several records
2. Groups of  people whose data are strongly correlated

Theorem: Let 𝐷!, 𝐷/ be two datasets of  𝑛 records that differ in 1 ≤ 𝑘 ≤ 𝑛 positions. If  an
algorithm 𝐴	is 𝜖-DP, then for all outputs 𝑆, we have

𝑃 𝐴 𝐷! ∈ 𝑆 ≤ 𝑒"8 ⋅ 𝑃[𝐴 𝐷/ ∈ 𝑆]

Need to set 𝜖 ≥ !
#
 for 

reasonable utility

Why? If  𝜖 ≪ !
#

  then regardless of  number of  differing positions 𝑘,

the distributions of  𝐴 𝐷!  and 𝐴 𝐷/  are almost same

To ensure high privacy, the algorithm ignores its input 

DP algorithms can’t 
give useful output for 
small datasets

Different than composition



Proof: Group Privacy
In Board



End of Lecture 2



Till Now: Numeric Queries

n 
in

di
vi

du
al

s

What fraction 
has disease?

sensitivenon-sensitive

Answer + 
Noise(1/𝜖𝑛)

Output perturbation

Useful only if  similar answers 
have similar utility

Not satisfied always Find profits for the following prices:
{3, 3.01, 4, 4.01, …} 



Privacy for Non-numeric Queries

Queries of  the form:

1. Which CS theory lecture is popular 
among students?

2. What is the most popular AI model?

3. Which price would make the most profit 
from buyers? 

Answers of  the form:

Y = {Matching, Zero-knowledge protocol, 
Differential privacy, …}

Y = {GPT4, Llama, Phi2, Gemini, …}

Y = {3, 3.01, 4, 4.01, …} 

Global Sensitivity of  a utility function 𝑢:
𝐺𝑆> = max

?∈@
	 max
;~;9

	|𝑢 𝐷, 𝑦 − 𝑢 𝐷9, 𝑦 |

Neighboring datasets How good is to return 𝑦 when query is	𝑞?

Query 𝑞: 𝐷 → 𝑌
Utility function 𝑢: 𝐷	×	𝑌 → ℝ



Exponential Mechanism

n 
in

di
vi

du
al

s

sensitivenon-sensitive

Answer 𝑦 ∈ 𝑌 

with probability ∝ exp(𝜖 ⋅ >(;,?)
/BC7

)

High utility answers 
exponentially more likely

Non-numeric
query 𝑞

Global Sensitivity of  a utility function 𝑢:
𝐺𝑆> = max

?∈@
	 max
;~;9

	|𝑢 𝐷, 𝑦 − 𝑢 𝐷9, 𝑦 |

Lectures
DP

Matching
ZKP
⋮

ZKP

Theorem: The mechanism that answers 𝑦 ∈ 𝑌 with probability  

P 𝐴 𝐷 = 𝑦 ∝ exp(𝜖 ⋅ >(;,?)
/BC7

) is 𝜖-DP



Privacy Guarantee: Proof
Upper bound on Global Sensitivity:
𝐺𝑆> = max

?∈@
	 max
;~;9

𝑢 𝐷, 𝑦 − 𝑢 𝐷9, 𝑦 ≤ Δ
For all y ∈ Y, we need to bound the ratio

  
D E ; F?  
D E ;9 F?  

We have P 𝐴 𝐷 = 𝑦 ∝ exp(𝜖 ⋅ >(;,?)
/G

) 

What is the 
proportionality 
constant here?

It is C D = !

∑89∈	: IJK	(8⋅
7 ;,89

=> )

See that 
D E ; F?  
D E ;9 F?  =

M(;)
M(;9)

⋅
IJK(8⋅7(;,8)=> )

IJK(8⋅7(;9,8)=> )

Re-write this as

exp(𝜖 ⋅
𝑢 𝐷, 𝑦 − 𝑢(𝐷9, 𝑦)

2Δ
)

This is upper- bounded by

exp(𝜖 ⋅
Δ
2Δ

)= exp(ϵ/2)

The ratio of  proportionality constants 
is also upper bounded by exp(ϵ/2)

Then, for all y ∈ Y, we bound the ratio as
D E ; F?  
D E ;9 F?  ≤ exp(ϵ/2) ⋅ exp(ϵ/2)= exp(ϵ)



Report Noisy Max Mechanism

n 
in

di
vi

du
al

s

sensitivenon-sensitive Non-numeric
query 𝑞

Lectures
DP

Matching
ZKP
⋮

ZKP

Answer argmax?∈@{	𝑢 𝐷, 𝑦 + ZN}
where each 𝑍? ∼ Exp(/BC7

8
) is

Independent and identically distributed

Exponential distribution has

PDF: 𝑝 𝑦; 𝜆 = !
O
exp − ?

O
, 𝑦 > 0

Global Sensitivity of  a utility function 𝑢:
𝐺𝑆> = max

?∈@
	 max
;~;9

	|𝑢 𝐷, 𝑦 − 𝑢 𝐷9, 𝑦 |

Theorem: The mechanism Report Noisy Max is 𝜖-DP



Recap: Differential Privacy 

The randomized algorithm A is 𝜖-differentially private 
if  for all neighboring datasets 𝐷, 𝐷′	and for all outputs 𝑆: 

𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃 𝐴 𝐷9 ∈ 𝑆



Variant: Approximate Differential Privacy 

The randomized algorithm A is (𝜖, 𝛿)-differentially private 
if  for all neighboring datasets 𝐷, 𝐷′	and for all outputs 𝑆: 

𝑃 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒8 ⋅ 𝑃 𝐴 𝐷9 ∈ 𝑆 + 𝛿

A is 𝜖-DP with 
probability at least 
1 − 𝛿 

Makes sense only 

when 𝛿 ≪ !
#
 Why? Pick a random person from the dataset and 

Publish her data  0, !
P
− DP



Recap: Laplace Mechanism for Pure DP

n 
in

di
vi

du
al

s

Query 𝑞
sensitivenon-sensitive

Answer + 
Laplace(G𝑆:/𝜖)Global sensitivity of  a query 𝑞:

𝐺𝑆: = max
;~;9

	|𝑞 𝐷 − 𝑞 𝐷9 |



Gaussian Mechanism for Approximate DP

n 
in

di
vi

du
al

s

sensitivenon-sensitive

Answer + 
Gaussian(0, 2log 1/𝛿 𝐺𝑆://𝜖/)

Query 𝑞

Theorem:
𝐴 𝐷, 𝑞 = 𝑞 𝐷 + Gaussian(0, 2log 1/𝛿 𝐺𝑆://𝜖/)

     is (𝜖, 𝛿)-DP (approximate DP)



Advanced Composition for Approximate DP

Theorem: Let 𝐴: 𝐷 → 𝑆!×	𝑆/×⋯×𝑆" be an composed 
algorithm that outputs (𝑠!, 𝑠/, ⋯ , 𝑠") where 𝑠! = 𝐴! 𝐷 ,
 𝑠/ = 𝐴/ 𝑠!, 𝐷 , … , 𝑠" = 𝐴" 𝑠!, ⋯ , 𝑠"0!, 𝐷 .Then 𝐴 is 
(𝜖9, 𝛿′)-DP, where

𝜖9 = 𝜖 2𝑘	log(1/𝛿=) + 𝑘𝜖 Q
?0!
Q?R!

 and 𝛿9 = 𝑘𝛿 + 𝛿=

𝐴!: 𝐷 → 𝑆! is (𝜖, 𝛿)-DP

𝐴/: 𝑆!×	𝐷 → 𝑆/ is (𝜖, 𝛿)-DP

𝐴S: 𝑆!×	𝑆/×	𝐷 → 𝑆S is (𝜖, 𝛿)-DP

D

𝑆! 𝑆/ 𝑆S 𝑆"

𝐴": 𝑆!×	𝑆/×⋯𝑆"0!	×	𝐷 → 𝑆" is(𝜖, 𝛿)-DP

⋮
Lower order term (𝑒8 ≈
1 + 𝜖 for small 𝜖)Some constant > 0
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