Introduction to Differential Privacy

Sayak Ray Chowdhury Assistant Professor Department of Computer Science and Engineering IIT Kanpur

Theory CS Winter School 2024 @ IISc Bangalore

Content

- Overview of Data Privacy
 - Why do we need privacy?
 - How can privacy be breached?
 - Adversarial Attacks
- Differential Privacy as an answer
 - Definition of Differential Privacy
 - Properties of Differential Privacy
 - Basic mechanisms, and their privacy and utility guarantees
- More DP mechanisms
 - A variant of DP definition

Acknowledgement

Materials are based on

- <u>The Algorithmic Foundations of Differential Privacy</u>, by <u>Cynthia Dwork</u> and <u>Aaron Roth</u>
- Privacy in Statistics and Machine Learning, taught by Adam Smith and Jonathan Ullman
- Privacy Preserving Machine Learning, taught by <u>Aurélien Bellet</u>
- Algorithms for Private Data Analysis, taught by Gautam Kamath
- Applied Privacy for Data Science, taught by James Honaker and Salil Vadhan

Suggestions are welcome

Data Privacy

The ability of an individual to seclude themselves or to withhold information about themselves

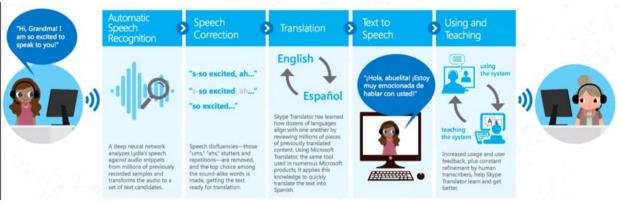
Data are everywhere

Massive collection of personal data by companies and public organizations, driven by the progress of data science and AI

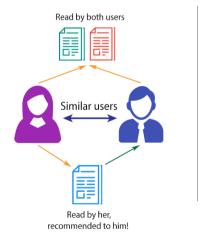
Data is increasingly sensitive and detailed: browsing history, purchase history, social network posts, speech, geolocation, health...

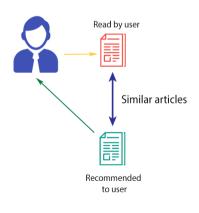
Machine Learning on our Data

Real-time Speech Translation



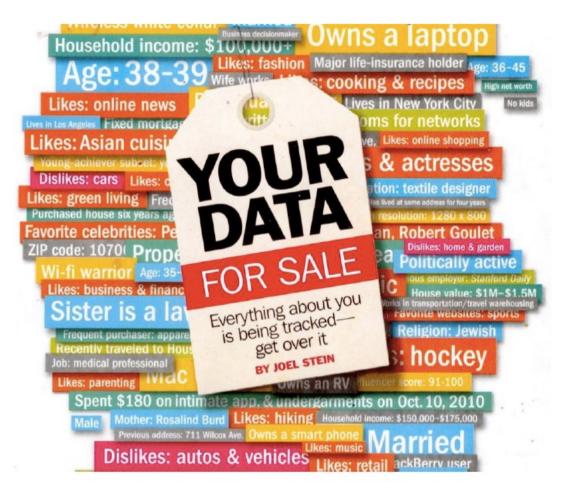
COLLABORATIVE FILTERING

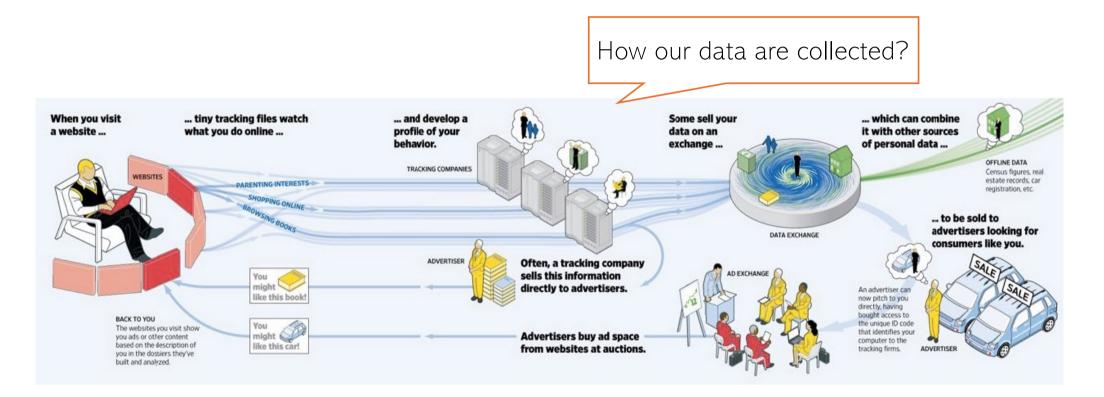




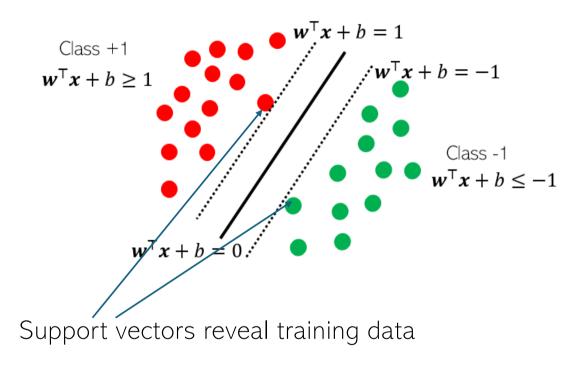
Autonomous Driving

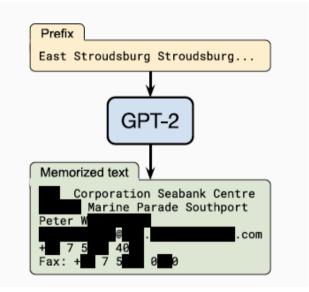
Conversational Systems





	Site	Exposure Index	Trackers 234	
	dictionary.com	Very High		
	merriam-webster.com	High	131 151	
	comcast.net	High		
	careerbuilder.com	High	118	
	photobucket.com	High	127	
Websites that track	msn.com	High	207	
our data	answers.com	Medium	120	
Jui Juia	yp.com	Medium	89	
	msnbc.com	Medium	117	
	yahoo.com	Medium	106	
	aol.com	Medium	133	
	wiki.answers.com	Medium	72	
	cnn.com	Medium	72	
	about.com	Medium	83	
	cnet.com	Medium	81	
	verizonwireless.com	Medium	90	
	imdb.com	Medium	55	
	live.com	Medium	115	
	att.com	Medium	58	
	walmart.com	Medium	66	
	bbc.co.uk	Medium	45	
	ebay.com	Medium	42	
	ehow.com	Medium	55	





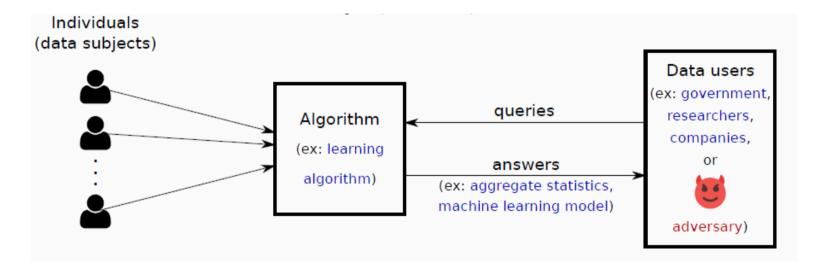
LLMs reveal Sensitive information (by adversarial prompting)

Modern ML models almost memorize inputs (e.g. Autocomplete feature in Gmail)

Given a database with sensitive information such as Credentials
credit card number, passwords, Identification Information
name, age, gender, bank details, biometrics, ... Sensitive Information
medical records, political opinions, religious beliefs, ...
How can we Policy formation, Clinical trials, Sentiment analysis, Searching for fraud, Academic research,
ensure desirable uses of the data Hiding individual information

while protecting the privacy of the data subjects?

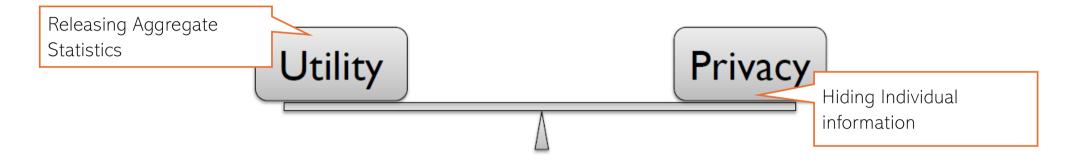
Privacy in Statistical Databases



Statistical analysis benefits society

Large collection of personal information

Two Conflicting Objectives



Goal: How to achieve utility while maintaining privacy?

But, before that: How do we define privacy?

1st Attempt: Data Anonymization

Remove obvious identifiers (name, social security number) that uniquely identify an individual before publishing the data

Convince ourselves that data cannot be fully anonymized AND remain useful

Name	Postal Code	Age	Sex	Has Disease?
Alice	02445	36	F	1
Bob	02446	18	М	0
Charlie	02118	66	М	1
:	:	:	:	
Zora	02120	40	F	1

Name	Postal Code	Age	Sex	Has Disease?
	02445	36	F	1
	02446	18	М	0
	02118	66	М	1
				:
	02120	40	F	1

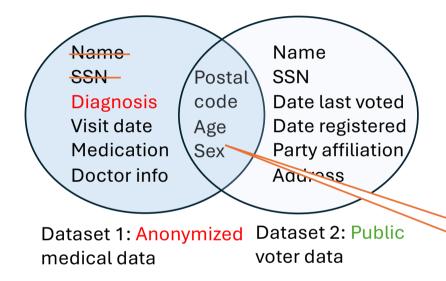
Zora has the disease

Now, we can't know that Zora has the disease

or, can we?

Is Data anonymization Safe?

Linkage Attack



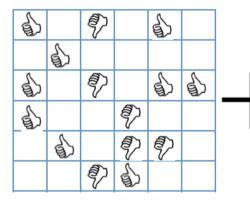
Reidentification via Linkage: uniquely linking a record in the anonymized dataset to a record in a public dataset

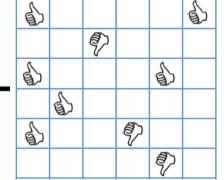
An estimated 87% of the US population is uniquely identified by the combination of their age, sex, and postal code

Quasi Identifiers

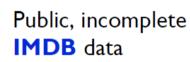
The Massachusetts Governor's privacy breach [Sweeney 2002]

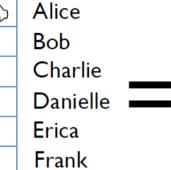
Linkage in Practice: The Netflix Challenge





Anonymized NetFlix data





Ð

Ð

5

Ð

Ð

6

Ð

5

Alice

Bob

Charlie

Danielle

Erica

Frank

6

Ð

6

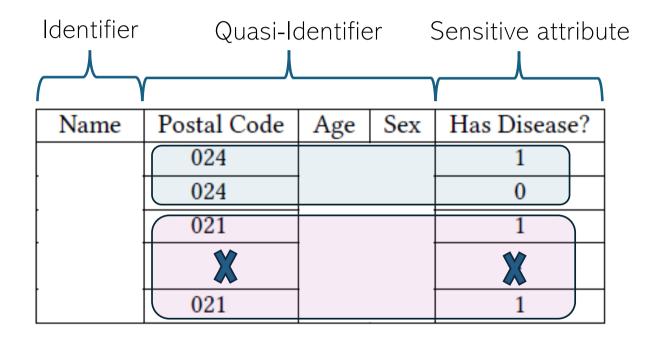
5

6

Challenge: Improve the Netflix Recommender system Prize: US\$1,000,000

- On average 4 movies uniquely identify a user • [Narayanan Shmatikov 2008]
- Reveal information on users' movie-watching • history, which they chose not to reveal publicly

2nd Attempt: K-Anonymization



Sweeny 2002:

Suppress/Generalize attributes to make every record in the dataset indistinguishable from at least k - 1 other records with respect to the Quasi Identifiers

Now, we can't know that Zora has the disease, or, can we?

No! Can still infer that Zoya has the disease (everyone in the group has it)

Pitfalls of K-Anonymization: Composition

	Non-Sensitive		Sensitive		Non-Sensitive			Sensitive	
	Zip code	Age	Nationality	Condition		Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS	1	130**	<35	*	AIDS
2	130**	<30	•	Heart Disease	2	130**	<35	*	Tuberculosis
3	130**	<30	•	Viral Infection	3	130**	<35	*	Flu
4	130**	<30	•	Viral Infection	4	130**	<35	*	Tuberculosis
5	130**	>40	*	Cancer	5	130**	<35	*	Cancer
6	130**	>40	*	Heart Disease	6	130**	<35	*	Cancer
7	130**	>40	*	Viral Infection	17	130**	>35	*	Cancer
8	130**	>40	*	Viral Infection	8	130**	>35	*	Cancer
9	130**	3*	*	Cancer	9	130**	>35	*	Cancer
10	130**	3*	*	Cancer	10	130**	>35	*	Tuberculosis
11	130**	3*	*	Cancer	11	130**	>35	*	Viral Infection
12	130**	3*	*	Cancer	12	130**	>35	*	Viral Infection

2 hospital release K anonymous tables for patients' medical history

A 28 year old person visited both hospitals

The person has AIDS

Ganta, Kashivishwanathan, Smith 2008

3rd Attempt: Release Aggregate Statistics

Is granularity the problem?

What if we only release aggregate statistics about many individuals?

Name	Postal Code	Age	Sex	Has Disease?
Alice	02445	36	F	1
Bob	02446	18	М	0
Charlie	02118	66	М	1
:		:	:	
Zora	02120	40	F	1

Data with the health insurance provider of a company

The company can ask for information like:

- How many females have the disease?
- How many females living in [postal code] have the disease?
- How many females living in [postal code] and aged [year] have the disease?

Now, can we know that Zora has the disease?

Are releasing aggregate statistics safe?-

Differencing Attack

Reconstruction Attack

Membership Inference Attack

Differencing Attack

Company asks: How many females living in 02120 and aged 40 have the disease?

Know	Sensitive			
Name	Postal Code	Age	Sex	Has Disease?
Alice	02445	36	F	1
Bob	02446	18	М	0
Charlie	02118	66	М	1
:	:	:	:	÷
Zora	02120	40	F	1

Say the answer is 1. Then it is very likely that the company learned about Zora's disease

Counter-argument: If the answer is 1, are we aggregating anything? What if the answer is 5?

Data with the health insurance provider of a company

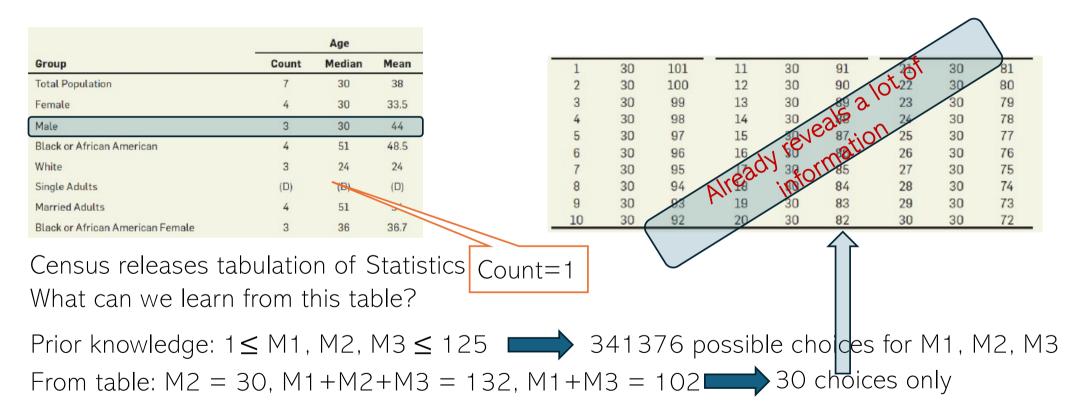
The company now asks:

- How many females living in 02120 and aged ≥ 40 have the disease? Answer: 5
- How many females living in 02120 and aged ≥ 41 have the disease? \longrightarrow Answer: 4

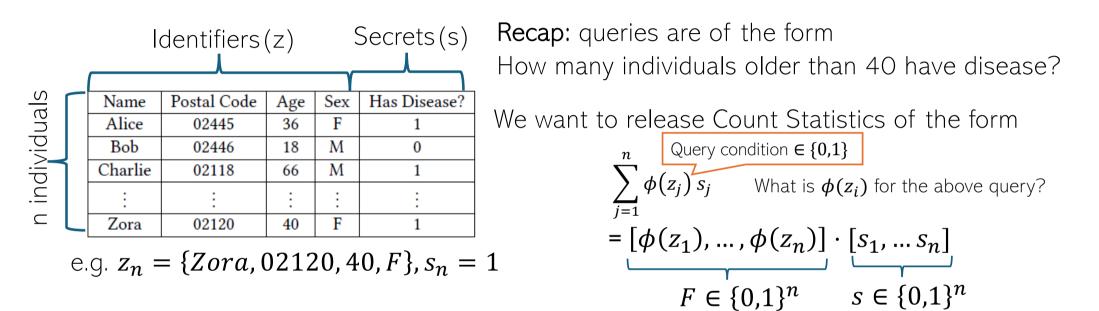
Zora's privacy is breached if she is the only 40 years old female employee living in 02120

Reconstruction from Statistical Table

Are specific questions the problem? "Attack" on statistical disclosure methods What if we ask for some "benign" information? used by US Census [Garfinkel et al 2019]



Reconstruction Attack



A General Reconstruction Attack:

Input: k query vectors $F_1, ..., F_k \in \{0,1\}^n$ and k answers $a_1, ..., a_k \in \mathbb{R}$ Output: a vector of secrets $\tilde{s} \in \{0,1\}^n$ that minimizes $\max_{i \in [k]} |F_i \cdot \tilde{s} - a_i|$

Reconstruction Accuracy

Reconstruction Attack:

Input: k query vectors $F_1, ..., F_k \in \{0,1\}^n$ and k answers $a_1, ..., a_k \in \mathbb{R}$ Output: a vector of secrets $\tilde{s} \in \{0,1\}^n$ that minimizes $\max_{i \in [k]} |F_i \cdot \tilde{s} - a_i|$

Hypothesis: each query is answered within error αn , that is, $\max_{i \in [k]} |F_i \cdot s| - a_i| \leq \alpha n$

Then the reconstruction error is at most $4\alpha n$ if the attacker makes $k = 2^n$ queries

number of entries where the vectors $s \& \tilde{s}$ differ

Powerful attack: Recovers 96% of secret bits even from answers with 1% error (think $\alpha = \frac{1}{100}$)

Reconstruction using all possible queries

But is this attack realistic?

No: it requires 2^n queries (exponential in the size of the dataset)

What if the number of queries are $\ll 2^n$?

Reconstruction Accuracy

Reconstruction Attack:

Input: k query vectors $F_1, ..., F_k \in \{0,1\}^n$ and k answers $a_1, ..., a_k \in \mathbb{R}$ Output: a vector of secrets $\tilde{s} \in \{0,1\}^n$ that minimizes $\max_{i \in [k]} |F_i \cdot \tilde{s} - a_i|$

Hypothesis: each query is answered within error αn , that is, $\max_{i \in [k]} |F_i \cdot s| - a_i| \leq \alpha n$

Then the reconstruction error is at most $O(\alpha^2 n^2)$ with probability $1 - 2^{-n}$ if the attacker makes k = O(n) queries chosen uniformly at random from the set 2^n possible queries

Powerful attack: Recovers nearly all secret bits (reconstruction error $\ll n$) from answers with error $\ll \sqrt{n}$ (think $\alpha \ll \frac{1}{\sqrt{n}}$)

But is this attack Computationally feasible? No: it requires to search over 2^n possible vectors

How can we make the attack run in time polynomial in n?

Reconstruction Attack (Compute Friendly)

Reconstruction Attack: Input: k query vectors $F_1, ..., F_k \in \{0,1\}^n$ and k answers $a_1, ..., a_k \in \mathbb{R}$ Output: a vector of secrets $\tilde{s} \in \{0,1\}^n$ that minimizes $\max_{i \in [k]} |F_i \cdot \tilde{s} - a_i|$ Output: a vector of secrets $\hat{s} \in \mathbb{R}^n$ that minimizes $\max_{i \in [k]} |F_i \cdot \hat{s} - a_i|$ & round-off to $\tilde{s} \in \{0,1\}^n$ Hypothesis: each query is answered within error $\ll \sqrt{n}$, that is, $\max_{i \in [k]} |F_i \cdot s - a_i| \ll \sqrt{n}$

Then nearly all secret bits are recovered with a very high probability if the attacker makes k = O(n) queries chosen uniformly at random from the set 2^n possible queries

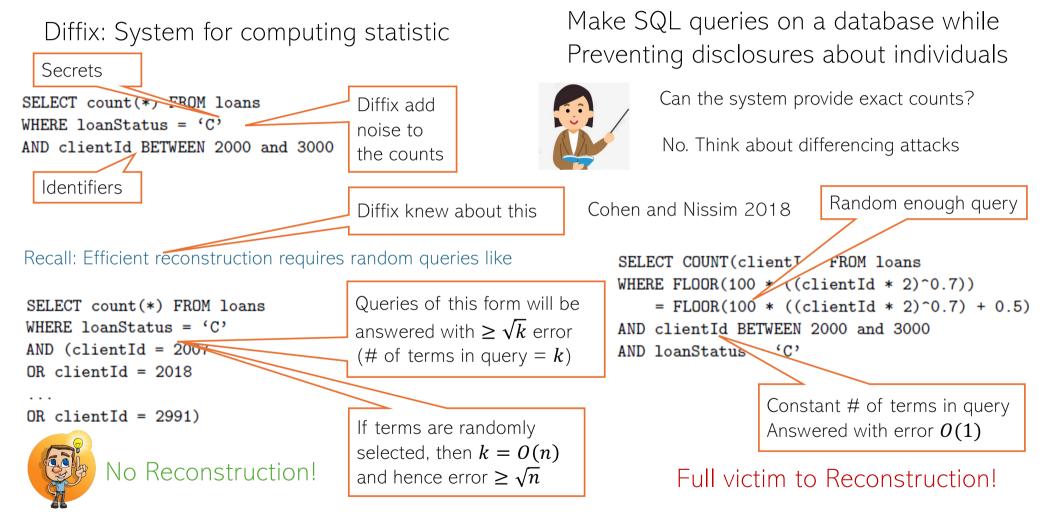
Linear programming in n variables & k = O(n) constraints

Rounding-off is Linear in $m{n}$

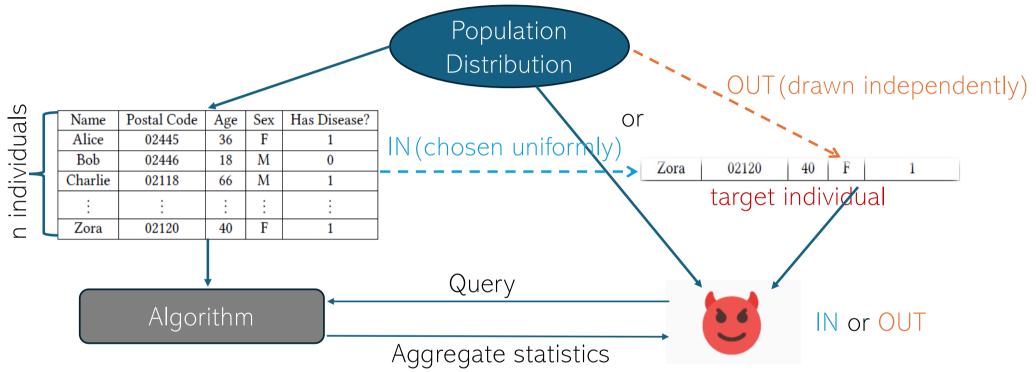
But why does reconstruction attack work when error $\ll \sqrt{n}$?

Membership Inference attacks

Reconstruction in Practice: The Diffix Challenge



Membership Inference Attack



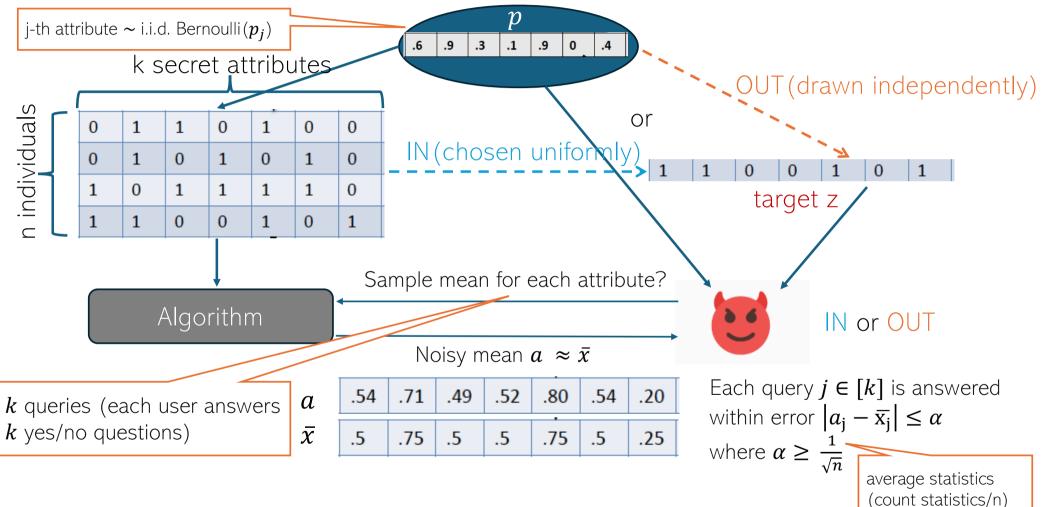
Attacker gets

- Access to Algorithms output
- Zora's data

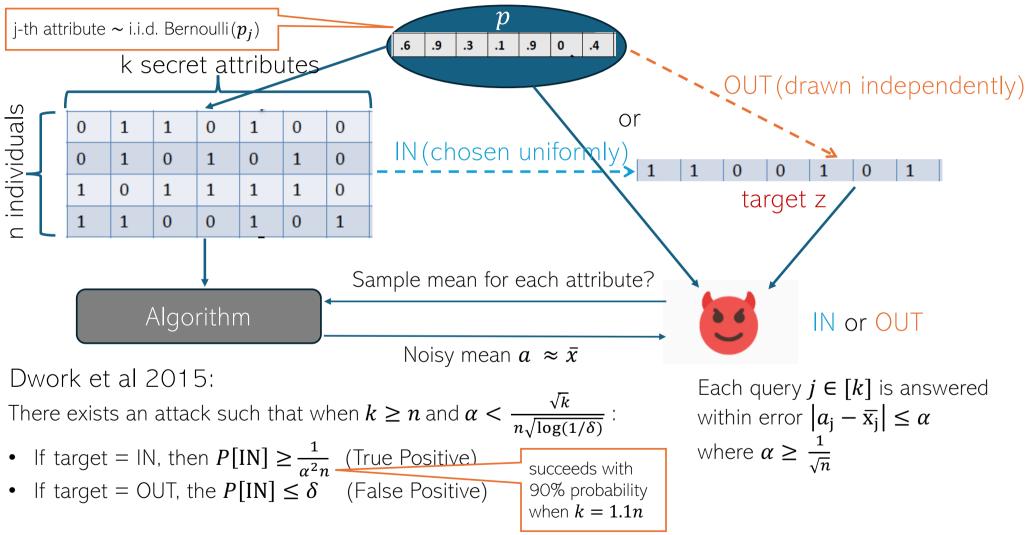
Attacker decides if Zora's data is in the dataset or not

• Auxiliary information about population

Membership Inference Attack



Membership Inference Attack

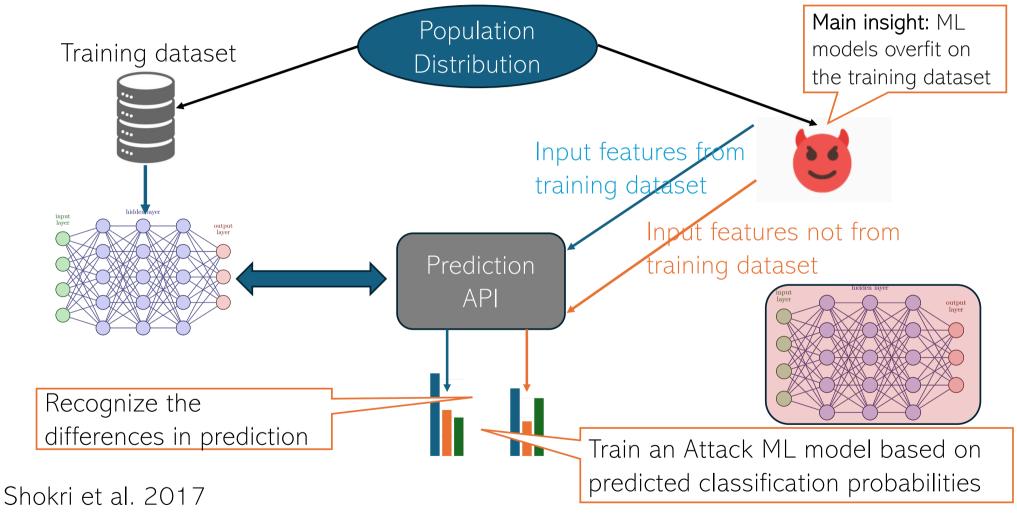


Membership Inference Attack j-th attribute ~ i.i.d. Bernoulli (p_i) 0 .6 .9 .3 .1 .9 .4 k secret attributes UT(drawn independently) n individuals or 0 0 0 0 1 1 1 IN (chosen uniformly 0 0 1 0 1 0 1 > 1 0 1 1 0 1 1 1 1 0 target z 0 1 1 0 0 1 1 Sample mean for each attribute? Algorithm IN or OUT Noisy mean $a \approx \bar{x}$ Dwork et al 2015: Choose each $p_i \sim U[0,1]$ There exists an attack such that when $k \ge n$ and $\alpha < \frac{\sqrt{k}}{n\sqrt{\log(1/\delta)}}$: The Attack: If $(a-p) \cdot (z-p) \ge \tau$ return IN If target = IN, then $P[IN] \ge \frac{1}{\alpha^2 n}$ (True Positive) else return OUT • Set $\tau \approx \sqrt{k \log(1/\delta)}$ to make

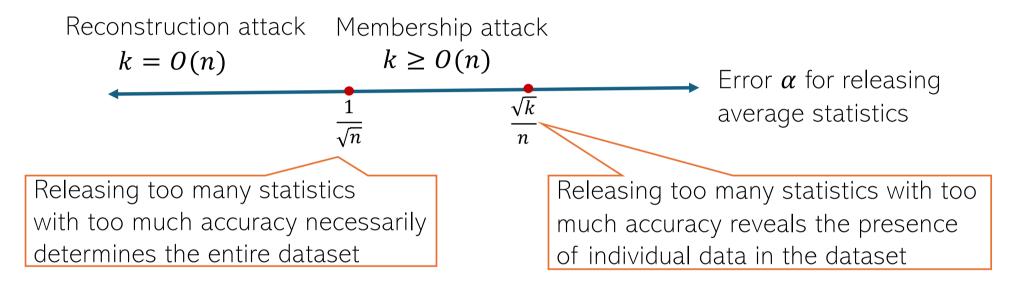
If target = OUT, the $P[IN] \leq \delta$ (False Positive) •

false positive probability δ

Membership Inference in Practice: ML vs. ML



The Attack Landscape

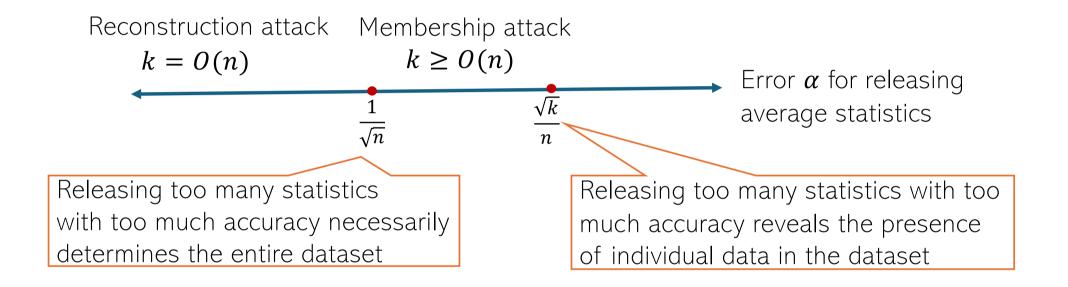


• Every statistic released yields a (hard or soft) constraint on the dataset

• We need a quantitative theory that tells us "how much is too much" and "how many is too many"

End of Lecture 1

Recap: The Attack Landscape



We need a quantitative theory for "how much is too much" and "how many is too many"

Recap: Reconstruction Attack

			Identifiers	Secrets(s)		
		1				1 1
	\square	Name	Postal Code	Age	Sex	Has Disease?
lua		Alice	02445	36	F	1
<i></i>		Bob	02446	18	М	0
ipu		Charlie	02118	66	М	1
n individuals		:	:	:	:	:
		Zora	02120	40	F	1

Recap: we want to answer k queries of the form $F \cdot s = \sum_{j=1}^{n} \phi(z_j) s_j$ (count statistics) Reconstruction Attack: Input: queries F_1, \dots, F_k and answers a_1, \dots, a_k

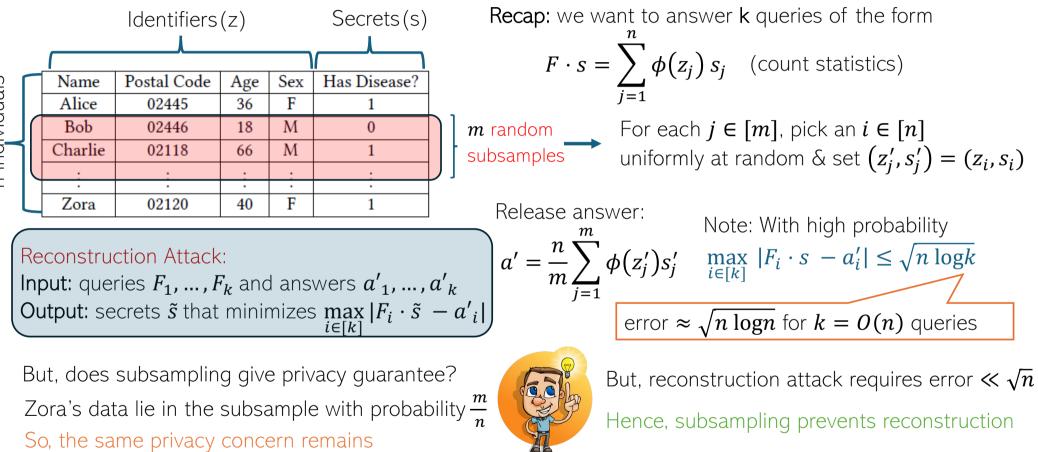
Output: secrets \tilde{s} that minimizes $\max_{i \in [k]} |F_i \cdot \tilde{s} - a_i|$

Hypothesis: each query is answered within error $\ll \sqrt{n}$, that is, $\max_{i \in [k]} |F_i \cdot s| - a_i| \ll \sqrt{n}$

Then nearly all secret bits are recovered with a very high probability if the attacker makes k = O(n) queries chosen uniformly at random from the set 2^n possible queries

Reconstruction attack works when error $\ll \sqrt{n}$

Preventing Reconstruction Attack



We need a theory to give accurate answers with rigorous privacy guarantees

n individuals

Requirements of Privacy

Protection against auxiliary knowledge: we need to be robust to whatever knowledge an attacker may have since we cannot predict what she knows or might know in the future

Protection against multiple analyses: we need to be able to track how much information is leaked when asking several questions about the same data

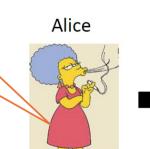
Achieving utility: we need to be able to do "meaningful statistical analysis" of datasets

Privacy Definition: Attempt 1

An analysis of a dataset is private if the attacker's belief about an individual stays the same after they see the result as it were before (no matter what they know before time)

Impossible to reveal nothing if the result is to depend on the data (else we don't get any utility)

Health insurance company knows Alice is a smoker



Before and after requirement unachievable after auxiliary knowledge

> company raises Alice's insurance premium

Does this breach Alice's privacy?

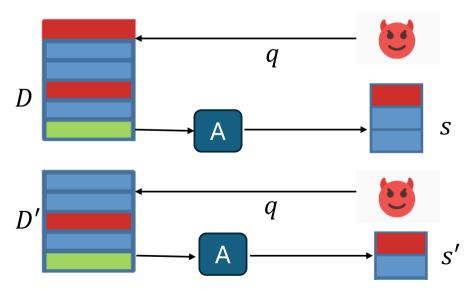
No: The company would have raised the premium regardless of Alice's participation

Such correlations are the kind of things we want to be able to learn

Privacy Definition: Attempt 2

An analysis of a dataset is private if the attacker would draw almost same conclusions about an individual whether or not her data were used in the analysis (no matter what they know before time)

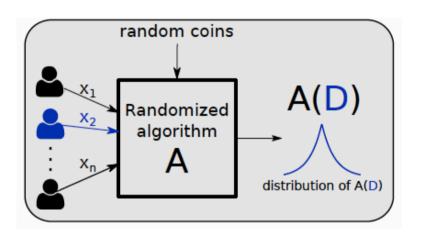
can't infer membership of an individual in the dataset or can't reconstruct any attribute about her



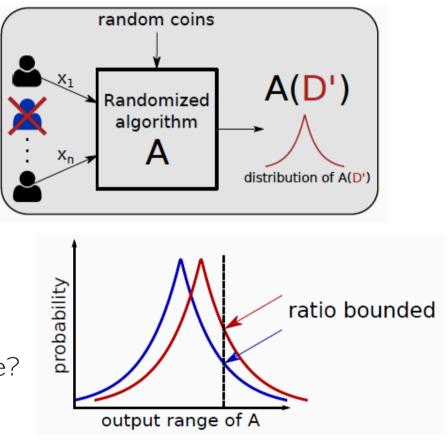
Randomization is necessary to be robust to auxiliary knowledge

- Say, A is a non-trivial deterministic algorithm
- For datasets *D*, *D'* differing only in a single record, the same query *q* yields different outputs *s*, *s'*
- An adversary knowing that the dataset is one of *D*, *D'* can learn the differing record

Differential Privacy (DP)



Dwork, McSherry, Nissim and Smith [2006]

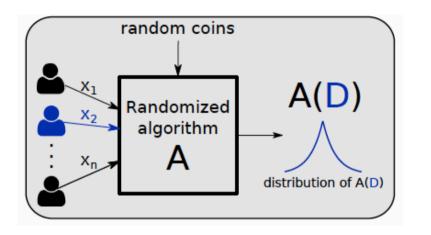


Requirement of DP: Both distributions should be close

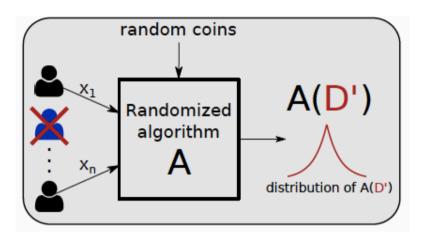
A thought experiment:

- Change, add or remove one person's data
- Will the probabilities of the outcomes change?

Differential Privacy (DP)



Dwork, McSherry, Nissim and Smith [2006]



The randomized algorithm A is ϵ -differentially private if for all neighboring datasets D, D' and for all outputs S:

A thought experiment:

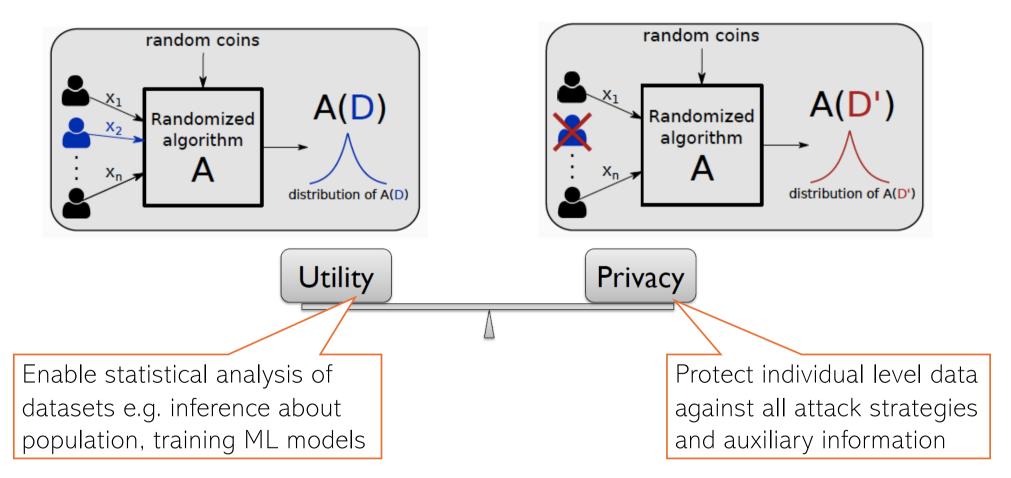
- Change, add or remove one person's data
- Will the probabilities the outcomes change?

(a) $P[A(D) \in S] \le e^{\epsilon} \cdot P[A(D') \in S]$ (b) $P[A(D') \in S] \le e^{\epsilon} \cdot P[A(D) \in S]$

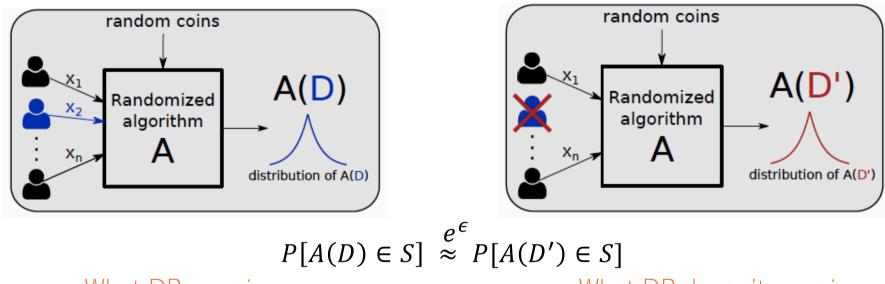
Neighboring datasets

Requirement of DP: Both distributions should be close ($\epsilon \approx 0$)

Two Conflicting Objectives



Promises (and not) of DP



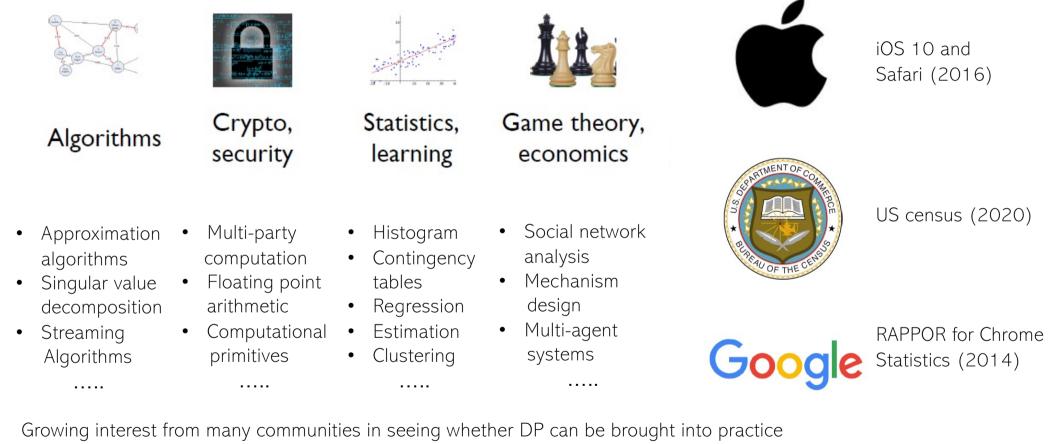
What DP promises ...

- Whatever an attacker learns about me, it could have learned from everyone else's data
- Protection from the attacker's auxiliary knowledge
- Graceful composition for multiple queries (k repetitions)

What DP doesn't promise...

- Protection for information that is not localized to a few records
- Giving privacy where none previously exists
- Guarantee that individuals won't be "harmed"

DP Research and Deployments



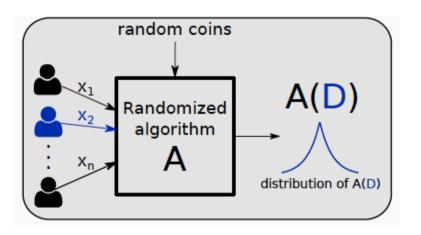
(databases, programming languages, medical informatics, law, social science, ...)

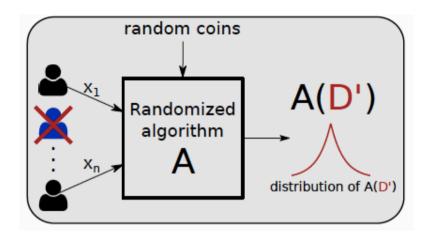
Comparison with other Privacy Models

Model	Utility	Privacy	Data holder
Differential Privacy	Statistical analysis of dataset	Individual information	Trusted server
Secure Function Evaluation	Any given query	Everything other than result of the query	Users
Homomorphic Encryption	Any given query	Everything	Untrusted server

Key principle: DP is a property of analysis and not of a particular output

Recap: Differential Privacy (DP)

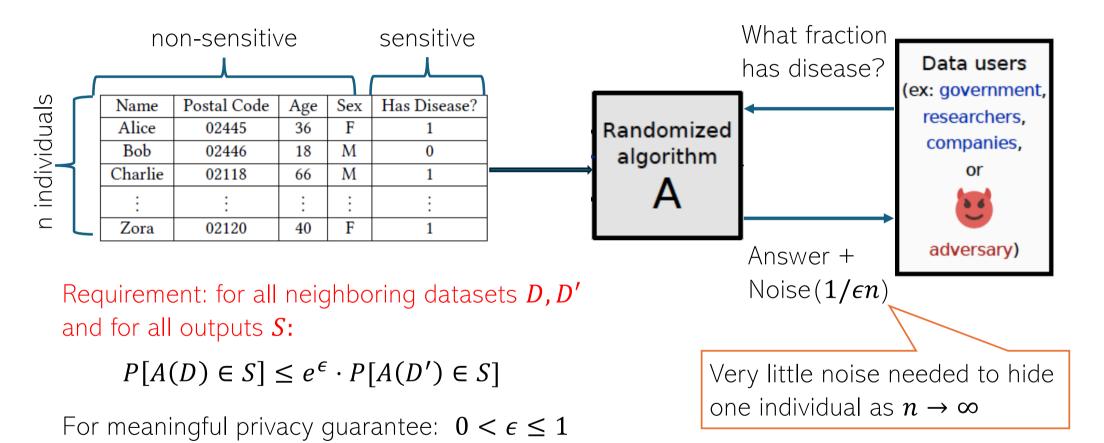




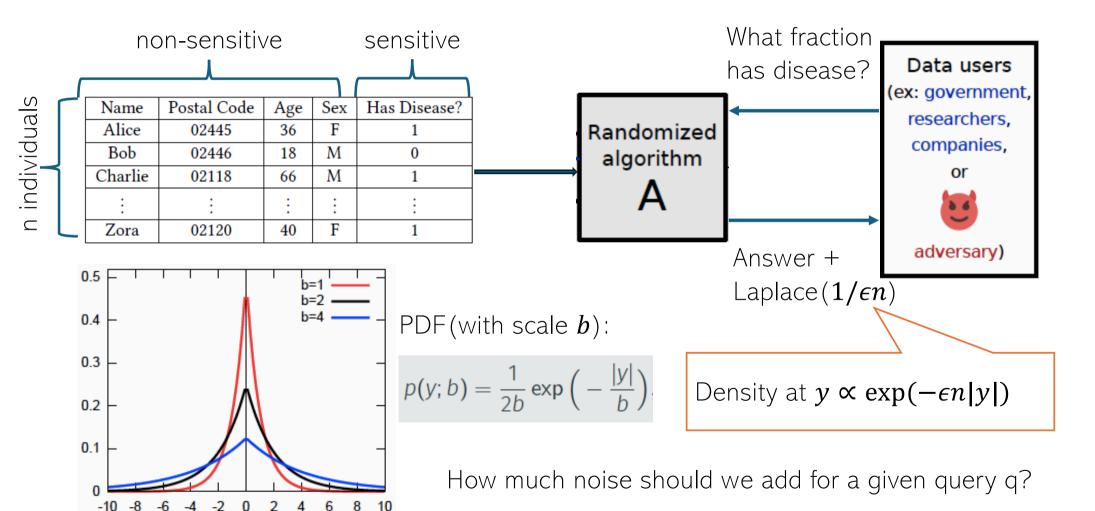
The randomized algorithm A is ϵ -differentially private if for all neighboring datasets D, D' and for all outputs S:

 $P[A(D) \in S] \le e^{\epsilon} \cdot P[A(D') \in S]$

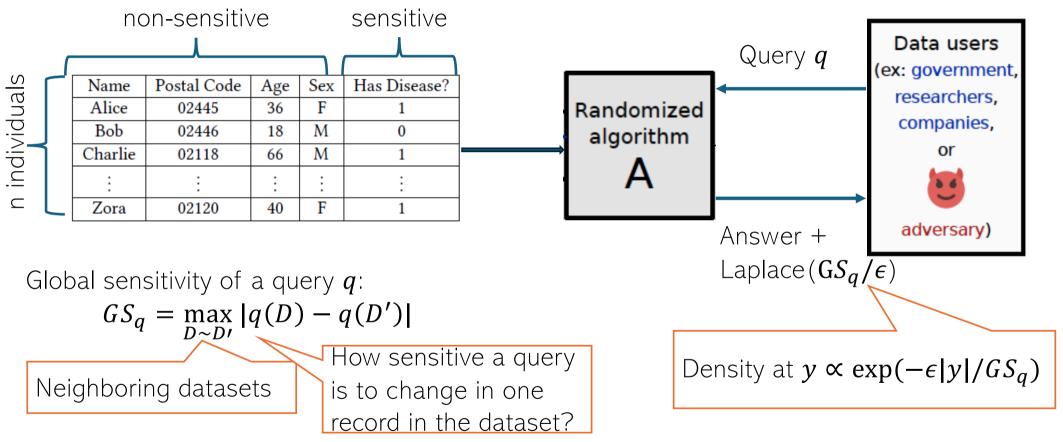
How to achieve DP?



Laplace Mechanism



Laplace Mechanism



Theorem: The mechanism $A(D,q) = q(D) + \text{Laplace}(GS_q/\epsilon)$ is ϵ -DP

Privacy Guarantee: Proof

In Board

Utility Guarantee

In Board

Properties of DP: Robust to Auxiliary Knowledge

A is ϵ -DP if for all neighboring datasets D, D' and for all outputs S:

 $P[A(D) \in S] \le e^{\epsilon} \cdot P[A(D') \in S]$

Robust to arbitrary auxiliary knowledge

Bounds the relative advantage that an attacker gets by observing output of an algorithm

Attacker may know the dataset except one record

Attacker may have all external sources of knowledge

Algorithm A can be public (a key requirement for modern security)

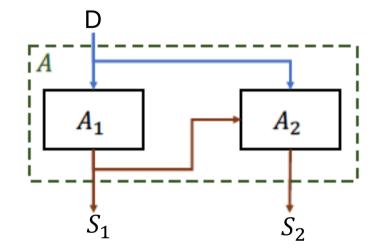
Properties of DP: Postprocessing

Theorem: Let an algorithm $A: D \to S$ be ϵ -DP and $f: S \to O$ be any (randomized) function. Then, the composed algorithm $f(A): D \to O$ is also ϵ -DP

Impossible to compute a function of the output of a private algorithm and make it less private Allows data users to do whatever they want with output of a private algorithm

Proof: In Board

Properties of DP: Basic Composition



Theorem: Let $A: D \to S_1 \times S_2$ be an composed algorithm that outputs (s_1, s_2) where $s_1 = A_1(D)$ and $s_2 = A_2(s_1, D)$. Then A is $(\epsilon_1 + \epsilon_2)$ -DP

Allows to control cumulative privacy for multiple queries on the same dataset

 $A_1: D \to S_1$ is ϵ_1 -DP

 $A_2: S_1 \times D \to S_2 \text{ is } \epsilon_2 \text{-DP} \longrightarrow A_2(s_1, \cdot) \text{ is } \epsilon_2 \text{-DP for all } s_1 \in S_1$

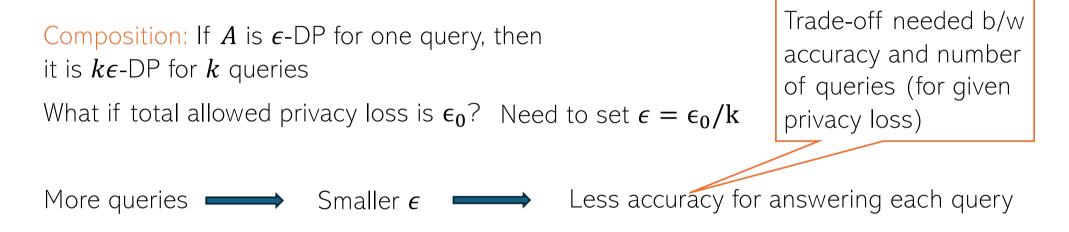
Extends to k such DP algorithms (one for each query): cumulative privacy scales linearly with number of queries

Can be improved using Advanced Composition: cumulative privacy scales sub-linearly with number of queries

Proof: Basic Composition

In Board

Privacy Accounting

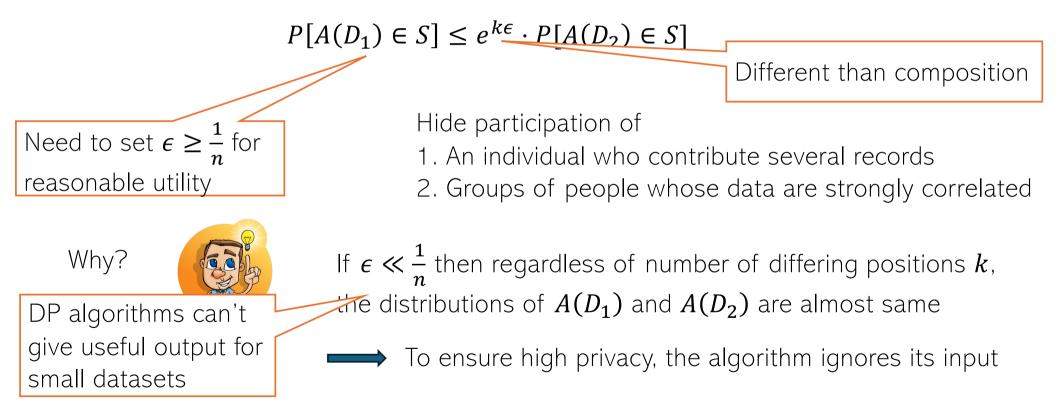


Composition (+ post-processing) allow designing DP algorithms which

Can ask multiple low-sensitivity queries
 Classic ML example:
 Can tolerate noisy answer to the queries
 Stochastic Gradient
 Descend (SGD)

Setting ϵ : Group Privacy

Theorem: Let D_1, D_2 be two datasets of n records that differ in $1 \le k \le n$ positions. If an algorithm A is ϵ -DP, then for all outputs S, we have

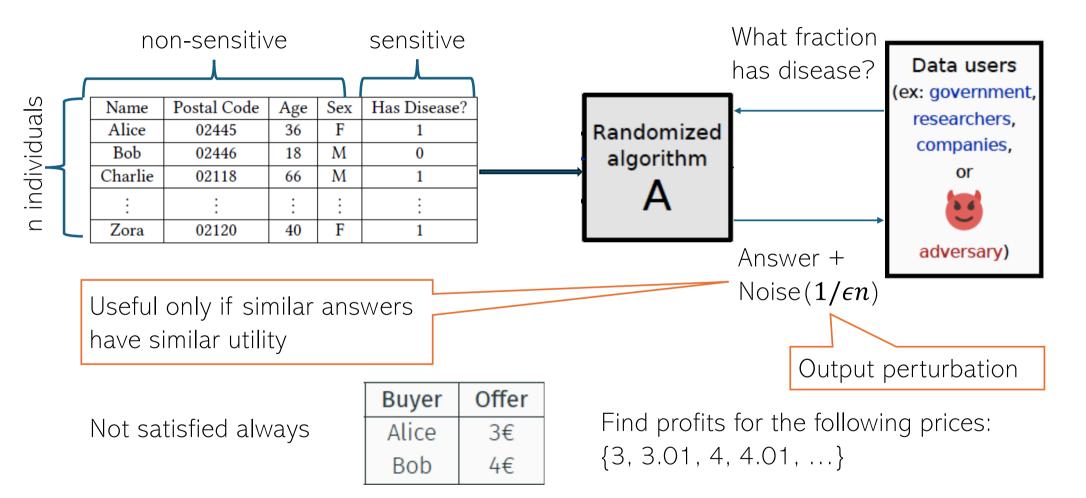


Proof: Group Privacy

In Board

End of Lecture 2

Till Now: Numeric Queries



Privacy for Non-numeric Queries

Queries of the form:

1. Which CS theory lecture is popular among students?

2. What is the most popular AI model?

3. Which price would make the most profit from buyers?

Global Sensitivity of a utility function u: $GS_u = \max_{y \in Y} \max_{D \sim D'} |u(D, y) - u(D', y)|$

Neighboring datasets

Answers of the form:

Y = {Matching, Zero-knowledge protocol, Differential privacy, ...}

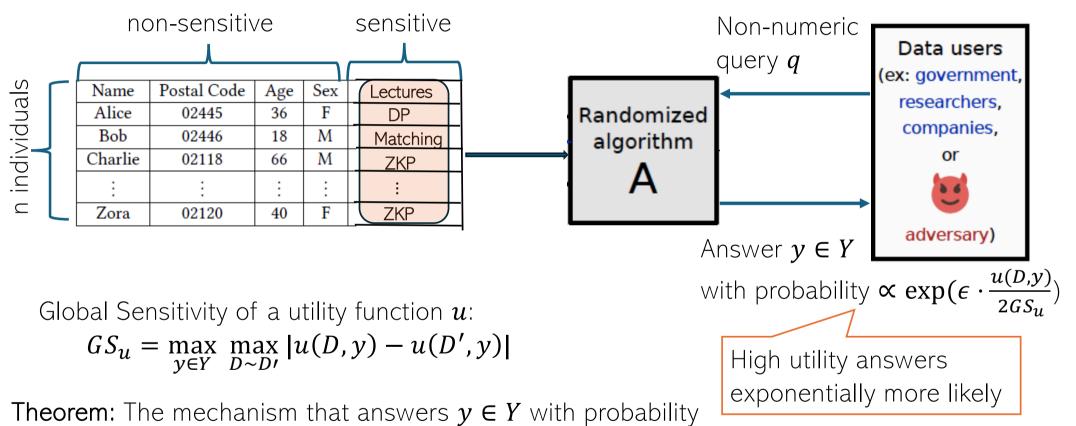
 $Y = \{GPT4, Llama, Phi2, Gemini, ...\}$

 $Y = \{3, 3.01, 4, 4.01, \ldots\}$

Query $q: D \to Y$ Utility function $u: D \times Y \to \mathbb{R}$

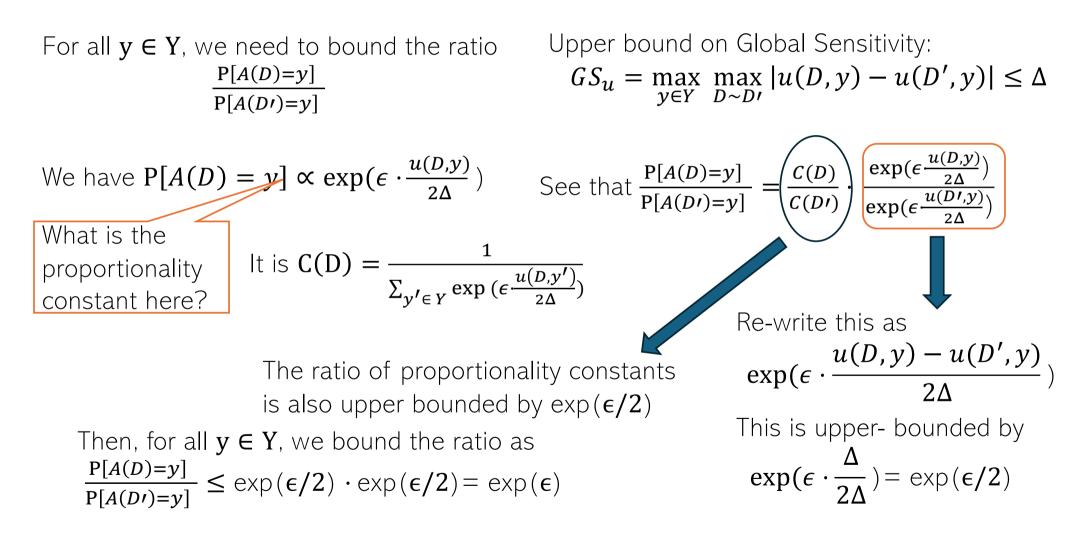
How good is to return y when query is q?

Exponential Mechanism

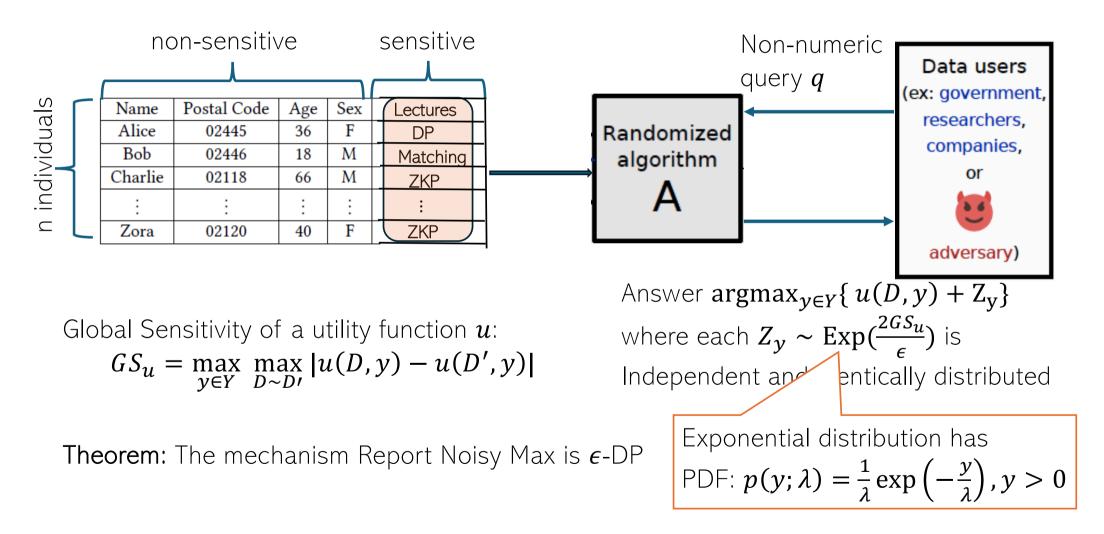


 $P[A(D) = y] \propto \exp(\epsilon \cdot \frac{u(D,y)}{2GS_u})$ is ϵ -DP

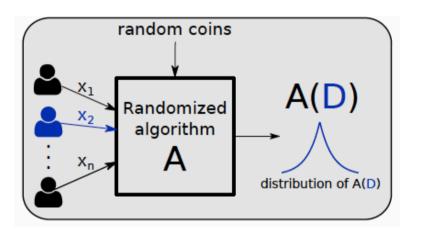
Privacy Guarantee: Proof

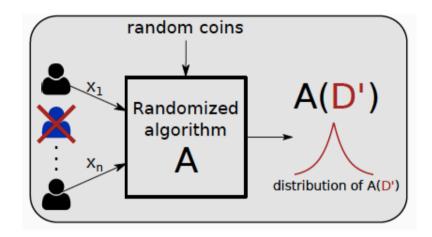


Report Noisy Max Mechanism



Recap: Differential Privacy

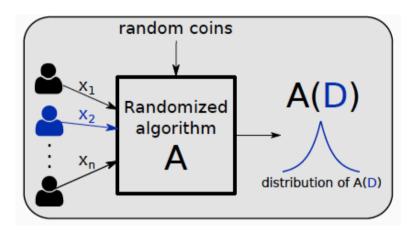


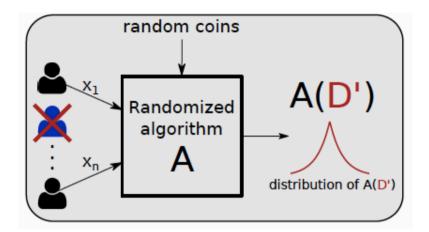


The randomized algorithm A is ϵ -differentially private if for all neighboring datasets D, D' and for all outputs S:

 $P[A(D) \in S] \le e^{\epsilon} \cdot P[A(D') \in S]$

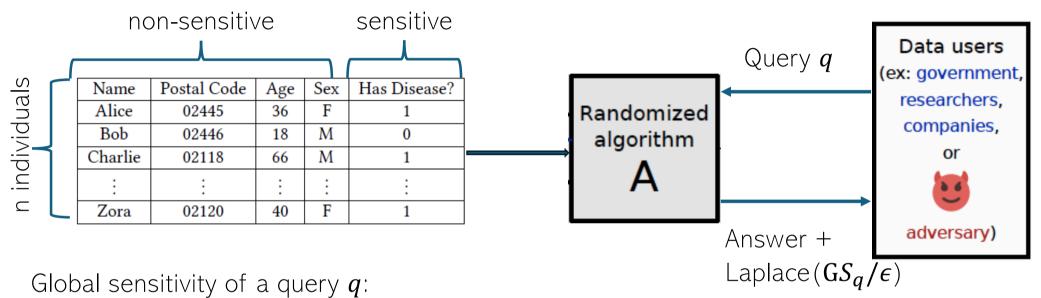
Variant: Approximate Differential Privacy





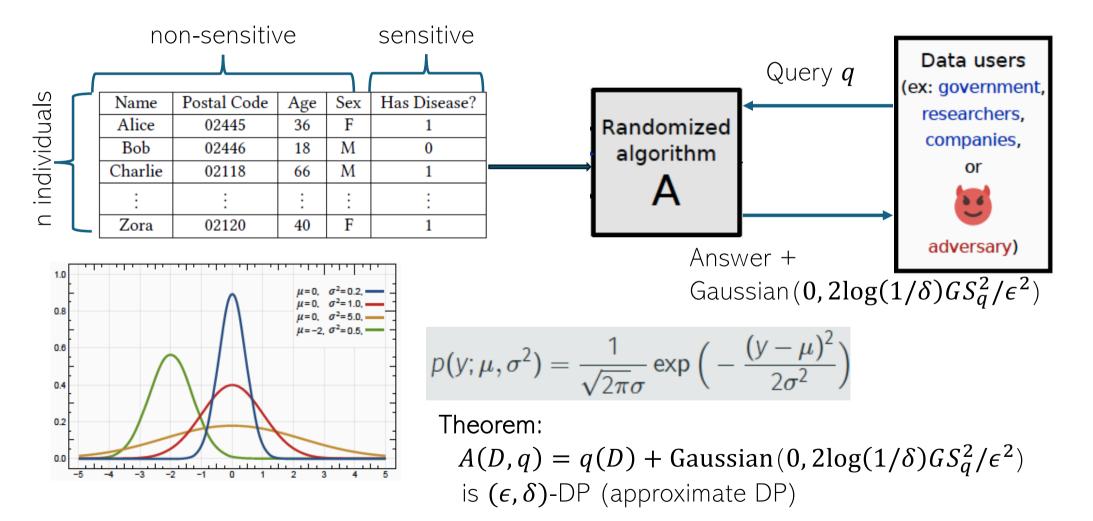
A is ϵ -DP with probability at least $1-\delta$ Makes sense only when $\delta \ll \frac{1}{n}$ Why? Why? The randomized algorithm A is (ϵ, δ) -differentially private if for all neighboring datasets D, D' and for all outputs S: $P[A(D) \in S] \leq e^{\epsilon} \cdot P[A(D') \in S] + \delta$ Pick a random person from the dataset and Publish her data $\longrightarrow (0, \frac{1}{n}) - DP$

Recap: Laplace Mechanism for Pure DP

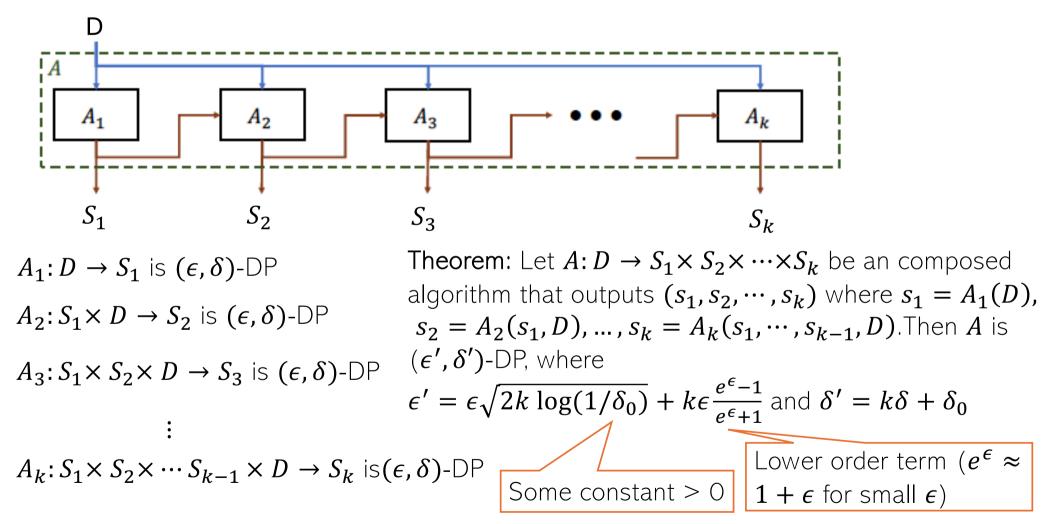


 $GS_q = \max_{D \sim D'} |q(D) - q(D')|$

Gaussian Mechanism for Approximate DP



Advanced Composition for Approximate DP



Selected References

- Dinur, I. and Nissim, K. (2003). Revealing information while preserving privacy.
- Simson Gar nkel, John M Abowd, and Christian Martindale. Understanding database reconstruction attacks on public data.
- Narayanan, A. and Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets.
- Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership inference attacks against machine learning models.
- Sweeney, L. (2002). k-anonymity: A model for protecting privacy.
- Dwork, C. and Roth, A. (2014). The Algorithmic Foundations of Differential Privacy.
- Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis.
- Aloni Cohen and Kobbi Nissim. Linear program reconstruction in practice.
- Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust traceability from trace amounts.
- Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy.
- Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., and Raffel, C. (2021). Extracting training data from large language models.